Меню

Acs712 datasheet датчик тока

Использование датчика тока ACS712. Часть 1 — Теория

Allegro ACS712

Измерение и контроль протекающего тока являются принципиальным требованием для широкого круга приложений, включая схемы защиты от перегрузки по току, зарядные устройства, импульсные источники питания, программируемые источники тока и пр. Один из простейших методов измерения тока –использование резистора с малым сопротивлением, – шунта между нагрузкой и общим проводом, падение напряжения на котором пропорционально протекающему току. Несмотря на то, что данный метод очень прост в реализации, точность измерений оставляет желать лучшего, т.к. сопротивление шунта зависит от температуры, которая не является постоянной. Кроме того, такой метод не позволяет организовать гальваническую развязку между нагрузкой и измерителем тока, что очень важно в приложениях, где нагрузка питается высоким напряжением.

Рисунок 1. Модуль датчика тока ACS712.

Основные недостатки измерения тока с помощью резистивного шунта:

  • нагрузка не имеет прямой связи с «землей»;
  • нелинейность измерений, обусловленная температурным дрейфом сопротивления резистора;
  • отсутствие гальванической развязки между нагрузкой и схемой измерения.

В статье мы рассмотрим экономичный и прецизионный интегральный датчик тока Allegro ACS712, принцип его работы, основанный на эффекте Холла, характеристики и способ подключения к микроконтроллеру для измерения постоянного тока. Статья разделена на две части: первая посвящена устройству и характеристикам датчика, вторая – интерфейсу с микроконтроллером и работе с датчиком.

Датчик тока ACS712 основан на принципе, открытом в 1879 году Эдвином Холлом (Edwin Hall), и названным его именем. Эффект Холла состоит в следующем: если проводник с током помещен в магнитное поле, то на его краях возникает ЭДС, направленная перпендикулярно, как к направлению тока, так и к направлению магнитного поля. Эффект иллюстрируется Рисунком 2. Через тонкую пластину полупроводникового материала, называемую элементом Холла, протекает ток I. При наличии магнитного поля на движущиеся носители заряда (электроны) действует сила Лоренца, искривляющая траекторию движения электронов, что приводит к перераспределению объемных зарядов в элементе Холла. Вследствие этого на краях пластины, параллельных направлению протекания тока, возникает ЭДС, называемая ЭДС Холла. Эта ЭДС пропорциональна векторному произведению индукции B на плотность тока I и имеет типовое значение порядка нескольких микровольт.

Рисунок 2. Эффект Холла.

Микросхема ACS712 выпускается в миниатюрном 8-выводном корпусе SOIC для поверхностного монтажа (Рисунок 3). Она состоит из прецизионного линейного датчика Холла с малым напряжением смещения и медного проводника, проходящего у поверхности чипа и выполняющего роль сигнального пути для тока (Рисунок 4). Протекающий через этот проводник ток, создает магнитное поле, воспринимаемое встроенным в кристалл элементом Холла. Сила магнитного поля линейно зависит от проходящего тока. Встроенный формирователь сигнала фильтрует создаваемое чувствительным элементом напряжение и усиливает его до уровня, который может быть измерен с помощью АЦП микроконтроллера.

Рисунок 4. Внутренняя конструкция датчика тока ACS712. Виден U-образный медный проводник проходящий вокруг элемента Холла.

На Рисунке 5 показано расположение выводов ACS712 и типовая схема его включения. Выводы 1, 2 и 3,4 образуют проводящий путь для измеряемого тока с внутренним сопротивлением порядка 1.2 мОм, что определяет очень малые потери мощности. Его толщина выбрана такой, чтобы прибор выдерживал силу тока в пять раз превышающую максимально допустимое значение. Контакты силового проводника электрически изолированы от выводов датчика (выводы 5 – 8). Расчетная прочность изоляции составляет 2.1 кВ с.к.з.

Рисунок 5. Расположение выводов интегрального датчика ACS712 и типовая схема включения.

В низкочастотных приложениях часто требуется включить на выходе устройства простой RC фильтр, чтобы улучшить отношение сигнал-шум. ACS712 содержит внутренний резистор RF, соединяющий выход встроенного усилителя сигнала со входом выходной буферной схемы (см. Рисунок 6). Один из выводов резистора доступен на выводе 6 микросхемы, к которому подключается внешний конденсатор CF. Следует отметить, что использование конденсатора фильтра приводит к увеличению времени нарастания выходного сигнала датчика и, следовательно, ограничивает полосу пропускания входного сигнала. Максимальная полоса пропускания составляет 80 кГц при емкости фильтрующего конденсатора равной нулю. С ростом емкости CF полоса пропускания уменьшается. Для снижения уровеня шума при номинальных условиях рекомендуется устанавливать конденсатор CF емкостью 1 нФ.

Читайте также:  Датчики ваз 2110 код

Рисунок 6. Функциональная схема датчика тока ACS712.

Чувствительность и выходное напряжение ACS712

Выходное напряжение датчика пропорционально току, протекающему через проводящий путь (от выводов 1 и 2 к выводам 3 и 4). Выпускается три варианта токового датчика для разных диапазонов измерения:

Соответствующие уровни чувствительности составляют 185 мВ/А, 100 мА/В и 66 мВ/A. При нулевом токе, протекающем через датчик, выходное напряжение равно половине напряжения питания (Vcc/2). Необходимо заметить, что выходное напряжение при нулевом токе и чувствительность ACS712 пропорциональны напряжению питания. Это особенно полезно при использовании датчика совместно с АЦП.

Точность любого АЦП зависит от стабильности источника опорного напряжения. В большинстве схем на микроконтроллерах в качестве опорного используется напряжение питания. Поэтому при нестабильном напряжении питания измерения не могут быть точными. Однако если опорным напряжением АЦП сделать напряжение питания датчика ACS712, его выходное напряжение будет компенсировать любые ошибки аналого-цифрового преобразования, обусловленные флуктуациями опорного напряжения.

Рассмотрим эту ситуацию на конкретном примере. Допустим, что для опорного напряжения АЦП и питания датчика ACS712 используется общий источник Vcc = 5.0 В. При нулевом токе через датчик его выходное напряжение составит Vcc/2 = 2.5 В. Если АЦП 10-разрядный (0…1023), то преобразованному выходному напряжению датчика будет соответствовать число 512. Теперь предположим, что вследствие дрейфа напряжение источника питания установилось на уровне 4.5 В. Соответственно, на выходе датчика будет 4.5 В/2 = 2.25 В, но результатом преобразования, все равно, будет число 512, так как опорное напряжение АЦП тоже снизилось до 4.5 В. Точно также, и чувствительность датчика снизится в 4.5/5 = 0.9 раз, составив 166.5 мВ/А вместо 185 мВ/А. Как видите, любые колебания опорного напряжения не будут источником ошибок при аналого-цифровом преобразовании выходного напряжения датчика ACS712.

На Рисунке 7 представлены номинальные передаточные характеристики датчика ACS712-05B при напряжении питания 5.0 В. Дрейф выходного напряжения в рабочем диапазоне температур минимален благодаря инновационной технологии стабилизации.

Рисунок 7. Зависимость выходного напряжения ACS712-05B от измеряемого тока при напряжении питания 5.0 В и различных рабочих температурах.

Часть 2 — Подключение датчика к микроконтроллеру и работа с ним

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Arduino и датчик тока ACS712

Датчик Холла для Arduino

Датчик тока является важным устройством в приложениях для расчета и управления мощностью. Он измеряет ток через устройство или цепь и генерирует соответствующий сигнал, который пропорционален измеренному току. Обычно выходной сигнал является аналоговым напряжением.

В этом проекте мы расскажем о датчике тока ACS712, о том, как работает датчик тока на основе эффекта Холла и, наконец, о том, как соединить датчик тока ACS712 с Arduino.

Микросхема датчика тока ACS712

Датчик тока ACS712 является продуктом Allegro MicroSystems, он может использоваться для точного измерения как переменного, так и постоянного тока. Этот датчик основан на эффекте Холла, а ИС имеет встроенное устройство с эффектом Холла. На выходе датчика тока ACS712 выдается аналоговое напряжение, пропорциональное переменному или постоянному току (в зависимости от того, что измеряется).

Читайте также:  Датчик топлива тойота лит айс

ACS712 доступна в 8-выводном корпусе SOIC, и на следующем рисунке показана ее схема контактов (распиновка ACS712).

IP+ – это плюсовая клемма для измерения тока, IP- – это минусовая клемма для измерения тока, GND – это сигнальная земля, FILTER – для подключения внешнего конденсатора, VIOUT – аналоговый выход, VCC – питание.

Существует три варианта датчика ACS712 в зависимости от диапазона его измерения тока. Оптимизированные диапазоны: +/- 5А, +/- 20А и +/- 30А. в зависимости от варианта чувствительность на выходе также изменяется следующим образом: ACS712 ELC-05 (+/- 5A) чувствительность 185 мВ/А, ACS712 ELC-20 (+/- 20A) чувствительность 100 мВ/А, ACS712 ELC-30 (+/- 30A) чувствительность 66 мВ/А.

Как упоминалось ранее, ASC712 основана на эффекте Холла. В микросхеме имеется медная полоса, соединяющая контакты IP+ и IP- внутри. Когда некоторый ток протекает через этот медный проводник, создается магнитное поле, которое определяется датчиком Холла.

Затем датчик Холла преобразует это магнитное поле в соответствующее напряжение. В этом методе вход и выход полностью изолированы.

Схема датчика тока на основе ACS712

Стандартная схема применения с использованием датчика тока ASC712 приведена в его техническом описании, и на следующем изображении:

Модуль датчика тока ACS712

Используя один из вариантов ИС ACS712 (5А, 20А или 30А), несколько производителей разработали платы модуля датчика тока ASC712, которые могут быть легко подключены к микроконтроллеру, такому как Arduino. На следующем рисунке показана плата датчика тока ASC712, используемая в этом проекте.

Как видите, это довольно простая плата с несколькими компонентами, включая микросхему ASC712, несколько пассивных компонентов и разъемов. Эта конкретная плата состоит из ASC712 ELC-30, то есть диапазон этой платы +/-30A.

Подключение ACS712 к Arduino (схема)

Измерение напряжения (постоянного напряжения) с помощью Arduino очень просто. Если ваше требование состоит в том, чтобы измерять напряжение меньше или равное 5 В, то вы можете напрямую измерять с помощью аналоговых выводов Arduino. Если вам нужно измерить более 5 В, то вы можете использовать простую сеть делителя напряжения или модуль датчика напряжения.

Когда дело доходит до измерения тока, Arduino (или любой другой микроконтроллер) нуждается в помощи в виде специального датчика тока. Итак, сопряжение датчика тока ACS712 с Arduino помогает нам измерять ток с помощью Arduino. Поскольку ASC712 может использоваться для измерения переменного или постоянного тока, проект с Arduino может быть реализован для измерения того же.

Принципиальная схема подключения датчика тока ACS712 к Arduino показана на следующем рисунке.

Код программы взаимодействия Arduino и датчика тока ACS712

Работа датчика тока ACS712 с Arduino

Подключите все согласно принципиальной схеме и загрузите код в Arduino. В коде есть небольшой расчет для измерения тока. Во-первых, если предположить, что напряжение VCC-ASC712 составляет 5 В, то при отсутствии тока, протекающего через клеммы IP + и IP-, выходное напряжение на VIOUT ACS712 составляет 2,5 В. Это означает, что вам нужно вычесть 2,5 В из напряжения, измеренного на аналоговом выводе.

Теперь, чтобы рассчитать ток, разделите это значение на чувствительность датчика (185 мВ / A для датчика 5A, 100 мВ / A для датчика 20A и 66 мВ / A для датчика 30A). Это все реализовано в коде.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Читайте также:  Датчик температуры воздуха во впускном коллекторе форд транзит

Датчик тока для Ардуино ACS712

При конструировании различных систем измерения и контроля может потребоваться измерить ток, протекающий по проводнику. Встроенными средствами аппаратной платформы Arduino низкое постоянное напряжение можно измерить без каких-либо проблем, а вот ток так просто измерить не получится. Одним из специальных датчиков, предназначенных решить данную проблему, является датчик тока ACS712, эти датчики бывают рассчитаны на различные максимальные значения измеряемого тока, в данном случае автор использовал датчик на 20А. Физически работа этого устройства основана на эффекте Холла. Данный эффект заключается в том, что носители электрического тока при движении вдоль проводника, помещенного в поперечное магнитное поле испытывают на себе действие силы Лоренца и отклоняются в сторону. Из за этого на боковых, по отношению к направлению тока, сторонах проводника возникает разность потенциалов, которую можно измерить 1. Датчик приобретен здесь всего за 100 рублей:

Устройство поставляется в антистатическом пакете

На печатной плате устройства хорошо видна клеммная колодка для подключения контролируемой цепи.

Габариты платы датчика 31 х 13 х 12 мм, масса 3,1 г.

Подключение датчика ACS712

На плате расположен 3-х контактный разъем.

На плате датчика имеется красный светодиод – индикатор питания. Сопротивление токовой шины 1,2 мОм 5, напряжение питания 5 В, ток потребления составляет около 12 мА.

Тестирование токового датчика

Автор обзора приобрел версию датчика рассчитанную на ток до 20 А, и это в целом было ошибкой. В радиолюбительской практике все же довольно редко приходится иметь дело с подобными значениями силы тока, так что более рациональным было бы приобретение версии рассчитанной на 5 А, так как у нее разрешение 185 мВ/А, против 100 мВ/А у 20А версии. Тем не менее, и данную версию можно использовать, но точность у нее ниже при измерении токов порядка 1 А.

Для тестирования можно использовать программу AnalogInput2 [6], на ее основе не сложно написать код для измерения значения силы тока, протекающей через датчик и вывода этих данных в удобном виде в монитор последовательного порта. При отсутствии тока на выходе датчика присутствует напряжение примерно в половину от напряжения питания, так, что встроенный АЦП Arduino вернет значение около 512.

В опытах по тестированию данного модуля использован блок питания, дающий напряжение 5 В, который согласно маркировке рассчитан на максимальный ток 2 А. При подключении одного резистора сопротивлением 10 Ом, ток через датчик составляет примерно 0,47 А.

При этом АЦП возвращает значение около 504.

При подключении параллельно первому резистору второго резистора с аналогичным сопротивлением, общее сопротивление потребителя составит 5 Ом, при этом амперметр показывает значение силы тока около 0,9 А.

При этом АЦП возвращает значение около 496.

Как известно встроенный АЦП Arduino UNO является 10 разрядным, т.е. диапазону напряжений от 0 до 5 В ставится в соответствие двоичное число от 0 до 1023. Таким образом, разрешение АЦП составляет примерно 0,0049 В. Как следует из приведенных выше данных току в 0,47 А соответствует напряжение 2,46 В, а току 0,9 А – 2,42 В, т.е изменению тока на 0,43 А соответствует изменение напряжения на 40 мВ, что вполне соответствует заявленным продавцом 100 мВ/А.В целом рассмотренный датчик заданные функции выполняет вполне успешно, устройство своих денег стоит.

Ссылки по теме

  1. radioprog.ru/post/99
  2. elenergi.ru/effekt-xolla.html
  3. arduino.ru/forum/programmirovanie/datchik-toka-acs712
  4. www.drive2.ru/b/456815746333278890/
  5. 3d-diy.ru/wiki/arduino-datchiki/datchik-toka-acs712/
  6. robocraft.ru/blog/arduino/59.html

Файлы проекта тут. Обзор сделал специально для сайта “2 Схемы” – Denev.

Источник

Adblock
detector