Меню

Азимутальный датчик положения стрелы

Памятка водителю-оператору пожарной автолестницы АЛ-30(131)ПМ-506Д. Часть 1 , страница 2

Рис. 1.2 Номограмма зависимости допустимой длины АЛ-30(131)ПМ-506Д от скорости ветра

2. ОСНОВНЫЕ ЭЛЕМЕНТЫ ОБЕСПЕЧИВАЮШИЕ БЕЗОПАСНУЮ РАБОТУ АВТОЛЕСТНИЦЫ

К числу основных элементов обеспечивающих безопасную работу автолестницы относятся датчики и конечные выключатели имеющие различный привод.

Схема размещения датчиков (конечных выключателей) представлена на рис. 2.1.

Рис. 2.1 Схема размещения датчиков (конечных выключателей) обеспечивающих безопасную работу автолестницы

· SQ2 — датчик транспортного положения комплекта колен; расположен на опорной стойке комплекта колен. Запрещает подъем комплекта колен до выдвижения аутриггеров и работу аутриггеров при поднятом комплекте колен;

· SQ3 — датчик рабочего положения аутриггеров, расположен на балке передней левой гидроопоры. Замыкаясь при выдвинутом аутриггере, коммутирует рабочую цепь автолестницы, разрешая работу стрелой лестницы;

· SQ4.1, SQ4.2 — датчики положения комплекта колен относительно оси рамы подъемного основания (возвратные выключатели), входящие в состав механизма бокового выравнивания и расположенные на цилиндре бокового выравнивания. При укладке (опускании) комплекта колен на угол менее 30 0 через электомагниты управляют гидрораспределителем цилиндра бокового выравнивания для совмещения осей комплекта колен и подъемной рамы в случае совмещения продольных осей стрелы и автомобиля – «стрела по центру»;

· SQ5, SQ6, SQ7, SQ15 – микропереключатели рычагов управления стрелой, расположенные напротив штоков гидрораспределителей подъёма-опускания, поворота вправо-влево и выдвигания; размыкают цепь питания (короткую цепь) электромагнита главного гидрораспределителя;

· SQ8 — датчик совмещения ступеней лестницы, установленный под концевой частью 4-го колена. Сигнализирует о совмещении ступеней за счет включения сигнальной лампочки HL9;

· SQ9.1, SQ9.2 — конечные выключатели предохранителя от столкновений стрелы, установленные на вершине 1-го колена. Предохраняют лестницу от повреждений при соударениях ее вершины с препятствием за счет прекращения и запрещения всех движений стрелы, путём разрыва цепи питания электромагнита главного гидрораспределителя;

· SQ10 — конечный выключатель максимальной длины, установленный под концевой частью 4-го колена рядом с датчиком совмещения ступеней SQ8. Запрещает (ограничивает) дальнейшее выдвигание колен при достижении максимальной длины стрелы лестницы путём разрыва цепи питания электромагнита главного гидрораспределителя;

· SQ11.1 — конечный выключатель превышения допускаемой грузоподъемности комплекта колен, установленный в нижней части левой тетивы 4-го колена. Останавливает все движения лестницы в случае превышения загрузки колен на 10% (Перегрузка 110 %), путём разрыва цепи питания электромагнита главного гидрораспределителя;

· SQ11.2 — датчик 100%-й загрузки комплекта колен, установленный рядом с датчиком SQ11.1. Предупреждает оператора о наличии 100%-й загрузки колен звучанием зуммера и включением сигнальной лампочки HL10;

· SQ12 – датчик положения башни, находящийся на поворотном основании. Разрешает работу стрелой лестницы (поворот и выдвигание-сдвигание) при углах подъема комплекта колен менее 10 0 и нахождении стрелы вне зоны кабины водителя (вправо или влево более 12,5 0 от оси автолестницы);

· SQ13 — конечный выключатель «Стрела по центру»; имеет две пары контактов и установлен с правой стороны на поворотном основании рядом с датчиком SQ12. Прекращает движение поворота (и другие движения стрелой) при совмещении оси стрелы лестницы с осью автомобиля путём разрыва цепи питания электромагнита главного гидрораспределителя. Работает в полуавтоматическом режиме: при нажатии вручную кнопки-табло «Совмещение осей». Вторыми парами контактов при совмещении оси стрелы лестницы с осью автомобиля и угле подъёма стрелы 30 0 и менее коммутирует цепь питания возвратных выключателей SQ4.1 и SQ4.2 для совмещения осей комплекта колен и подъёмной рамы;

Источник

Датчик зенитного и азимутального углов

Использование: в буровой технике для определения зенитного и азимутального углов скважины. Сущность изобретения: датчик содержит корпус и установленную в нем с возможностью вращения и осевого перемещения рамку 4 экцентричной массы. На рамке 4 смонтированы полусферические чувствительные элементы зенитного 7 и азимутального 8 углов. Арретирующие рычаги 10 с захватами 11 закреплены на рамке 4 и кинематически связаны подпружиненными тягами 12 со штоком 5. Шток имеет ограничение осевого перемещения относительно корпуса 1. Рамка 4 установлена с возможностью взаимодействия торцовой поверхностью с толкателями 3 привода 2. 2 ил.

Изобретение относится к буровой технике, а именно к датчикам для измерения зенитного и азимутального углов скважины.

Известен датчик зенитного и азимутального углов, содержащий корпус, установленную в нем с возможностью вращения рамку эксцентричной массы, полусферические чувствительные элементы зенитного и азимутального углов, установленные на рамке, арретирующие рычаги с захватами под чувствительные элементы, закрепленные на рамке и кинематически связанные посредством подпружиненных тяг со штоком, установленным с возможностью ограничения осевого перемещения относительно корпуса, и привод.

Недостатком этого датчика является то, что в процессе его спуска чувствительные элементы находятся в разарретированном состоянии и их опорные элементы испытывают значительные ударные нагрузки. Это приводит к преждевременному износу опорных элементов и снижению точности измерения и долговечности датчика. Кроме того, после завершения операции измерения рамка эксцентричной массы остается незафиксированной. Следовательно, в процессе подъема датчика она может вращаться вокруг своей оси, в результате чего происходит износ штока в точке его контакта с тягами и нарабатывается люфт, что снижает надежность в работе датчика в целом.

Целью изобретения является повышение точности измерения и надежности работы датчика в скважинных условиях.

Для этого датчик зенитного и азимутального углов, содержащий корпус, установленную на нем с возможностью вращения рамку эксцентричной массы, полусферические чувствительные элементы зенитного и азимутального углов, установленные на рамке, арретирующие рычаги с захватами под чувствительные элементы, закрепленные на рамке и кинематически связанные посредством подпружиненных тяг со штоком, установленным с возможностью ограничения осевого перемещения относительно корпуса, и привод, снабжен толкателями, размещенными на приводе, рамка установлена в корпусе с возможностью осевого перемещения и взаимодействия торцовой поверхности с толкателями.

Читайте также:  Датчик центрального замка сдвижной двери vw t4

На фиг. 1 изображен предлагаемый датчик в разарретированном состоянии; на фиг.2 — то же, в арретированном.

Датчик содержит корпус 1, в котором размещен привод 2 с блоком толкателей 3, измеритель зенитного и азимутального углов, состоящий из рамки 4 эксцентричной массы, штока 5, установленного на неподвижном основании 6 и размещенного в рамке, полусферических чувствительных элементов зенитного 7 и азимутального 8 углов, смонтированных в рамке на осях 9, арретирующих рычагов 10, с одной стороны закрепленных на рамке, а с другой снабженных кольцевыми захватами 11 и связанных между собой и в верхней частью штока подпружиненными тягами 12. Чувствительный элемент 8 азимутального угла (катушка) подвешен на расположенной в теле чувствительного элемента 7 зенитного угла (отвес) подпружиненной оси 13.

Датчик работает следующим образом.

На поверхности непосредственно перед спуском в скважину производится установка времени срабатывания привода 2 и его взвод в рабочее положение. При этом осуществляется арретирование измерителя, которое происходит следующим образом. В процессе взвода блок толкателей 3 перемещается в крайнее верхнее положение, двигая при этом рамку 4. Неподвижный шток 5, верхний торец которого связан с подпружиненными тягами 12, сводит арретирующие рычаги 10, кольцевые захваты 11 которых фиксируют одновременно элементы 8 и 7. При этом обе полусферы чувствительных элементов соединяются, образуя шар, а оси кольцевых захватов совмещаются с осью отвеса. В таком арретированном состоянии датчик доставляется в точку измерения.

В заданный момент времени срабатывает привод 2 и происходит разарретирование катушки и отвеса (элементов 8 и 7). Блок толкателей 3 перемещается в крайнее нижнее положение, освобождая рамку 4. Под действием подпружиненных тяг 12 арретирующие рычаги 10 расходятся, освобождая чувствительные элементы измерителя, а рамка 4 перемещается в крайнее левое положение. Происходит измерение зенитного и азимутального углов.

Через время, определенное конструктивными особенностями привода 2 и достаточное для положения покоя катушки и отвеса в измеренном положении, происходит арретирование датчика. Измерение закончено. Датчик извлекается на поверхность и осуществляется визуальное считывание измеренных величин значений углов.

Датчик транспортируется к точке измерения в арретированном состоянии, что позволяет предохранить опорные элементы чувствительных элементов датчика от ударных и вибрационных нагрузок. В арретированном состоянии рамка датчика находится в зафиксированном положении при помощи блока толкателей, что предотвращает износ штока в месте контакта его с тягами и наработку люфтов между ними в процессе подъема датчика на поверхность. Это позволяет увеличить ресурс работы датчика и повысить точность измерения.

ДАТЧИК ЗЕНИТНОГО И АЗИМУТАЛЬНОГО УГЛОВ, содержащий корпус, установленную в нем с возможностью вращения рамку эксцентричной массы, полусферические чувствительные элементы зенитного и азимутального углов, установленные на рамке, арретирующие рычаги с захватами под чувствительные элементы, закрепленные на рамке и кинематически связанные посредством подпружиненных тяг со штоком, установленным с возможностью ограничения осевого перемещения относительно корпуса, и привод, отличающийся тем, что, с целью повышения точности измерения и надежности работы датчика в скважинных условиях, он снабжен толкателями, размещенными на приводе, а рамка установлена в корпусе с возможностью осевого перемещения и взаимодействия торцевой поверхности с толкателями.

Источник

Способ и устройство автоматической координатной защиты башенного крана при работе в стеснённых условиях

Владельцы патента RU 2246441:

Группа изобретений относится к технике обеспечения безопасности работы башенных кранов. В соответствии с планом производства работ задают зоны с разными типами ограничений движения крана, связанные с конкретными объектами. Эти зоны вводятся в ПЭВМ, не входящую в приборный комплекс системы координатной защиты, в условиях лаборатории. В ПВЭМ с помощью специального программного обеспечения формируется массив данных, каждый элемент которого сопоставлен элементу строительной площадки и содержит информацию о запрещенных движениях крана в соответствующей точке. Полученный массив записывается в перепрограммируемое постоянное запоминающее устройство (ППЗУ) системы координатной защиты, которая по сигналам от датчиков, определяющих положение крана и его элементов, и по сигналам из ППЗУ формирует сигналы блокировки приводов при попадании крана и его рабочих органов в запрещенную зону. Группа изобретений обеспечивает с помощью простых средств координатную защиту крана с повышенной эффективностью. 2 н.п. ф-лы, 1 ил.

1 Область техники, к которой относится изобретение.

Изобретение относится к крановым предохранительным устройствам, а именно к ограничителям движения башенных подъемных кранов при работе в стесненных условиях, создаваемых неподвижными объектами.

Известны способы и устройства ограничения движений крана, включающие операции предварительного задания разрешенных зон с использованием кулачков и конечных выключателей, которые применяются для осуществления блокировки перемещения кранов и его элементов (“Устройство для программного управления механизмом поворота и вылета стрелы”. А.С. СССР №464099, В 66 С 13/48, 1966 г.).

Недостатком этих способов и устройств являются существенные ограничения по заданию зон ограничения, трудоемкость переналадки при изменении положения препятствий и необходимость использования кабельных соединений, размещаемых на подкрановой площадке.

Известно изобретение “Указатель положения препятствий для стрелового крана” (А.С. СССР №1104095, В 66 С 23/88, 1984 г.), которое обеспечивает повышение безопасности работы крана в стесненных условиях с помощью индикации препятствий на дисплее. Устройство содержит датчики угла наклона, поворота стрелы, высоты подъема груза, датчик угла наклона стрелы, а также преобразователи сигналов и дисплей.

Недостатком устройства является отсутствие автоматического управления механизмами крана и необходимость для оператора крана одновременно наблюдать за дисплеем и реальным положением груза на крюке крана.

Известны системы координатной защиты, например, фирмы Liebherr (по каталогам фирмы), и приведенные в заявке РФ №2093452, В 66 С 13/18, 15/00, 23/88, 1997 г., в которых используются микроЭВМ, устанавливаемые непосредственно на подъемном кране. В память микроЭВМ с помощью клавиатуры заносятся контуры зон, где запрещена работа, и микроЭВМ, определяя с помощью датчиков положение элементов подъемного крана, формирует сигналы блокировки его механизмов для предотвращения попадания стрелы или груза в запрещенные зоны.

Читайте также:  Изменение сопротивления датчика температуры при нагреве

Эти системы, наиболее близкие к предлагаемой, требуют использования на кране сложной аппаратуры с дисплеем и устройством ввода информации, которые должны выдерживать тяжелые климатические и механические условия работы, а также высокопрофессионального персонала для ввода параметров ограничения движений крана и обслуживания аппаратуры, что обусловливает ограниченное использование таких систем на большинстве башенных кранов.

Техническая задача состоит в построении системы автоматической координатной защиты работы крана в стесненных условиях, учитывающей положения элементов крана относительно объектов, расположенных на строительной площадке, без использования сложных электронных устройств и разветвленных кабельных соединений.

Предлагаемым изобретением решается задача создания системы автоматической координатной защиты для башенных подъемных кранов, работающих в стесненных условиях.

Отличительными признаками предлагаемой системы координатной защиты являются:

— разделение зон ограничения по типам ограничения;

— задание зон ограничения в соответствии с планом производства работ;

— разделение задач по вводу зон ограничений и расчетам для формирования признаков ограничения и задач по определению местоположения крана на строительной площадке, принятию решения и выдачи сигналов управления приводами крана.

В предлагаемой системе приняты следующие типы зон ограничения при работе крана в стесненных условиях:

— зона с ограничением по любому элементу стрелы;

— зона с ограничением по вылету груза;

— зоны с ограничением по высоте подъема груза;

— запретная зона ограничения по любому элементу стрелы;

— запретная зона ограничения по вылету груза;

— опасная зона, в которой выдается звуковой сигнал.

Типы зон ограничения в соответствии с требованиями нормативных документов по безопасности проведения строительных работ определяются объектами, расположенными на строительной площадке в зоне достижения рабочих органов крана. Дифференциация зон ограничения по типам позволяет оптимизировать работу крана с соблюдением требуемых норм. Конфигурация и расположение зон ограничения соответствуют конфигурации и расположению объектов на строительной площадке.

Запретные зоны формируются вокруг зон ограничения (объектов), их ширина задается с учетом требований нормативных документов (габаритные размеры поднимаемых грузов, высота подъема и пр.).

Задание зон ограничения, запретных и опасных зон производится на ПЭВМ типа IBM PC, в которую загружено специализированное программное обеспечение (ПО). По заданным длине подкранового пути и максимальному вылету (длине стрелы) на экране монитора ПЭВМ чертится строительная площадка, разбитая на дискретные элементы, размер и количество которых определяется точностью измерений соответствующих параметров. С помощью манипулятора “мышь” и клавиатуры каждому элементу строительной площадки присваивается тип зоны (разными цветами на экране монитора ПЭВМ) в соответствии с представленным планом производства работ. После задания всех зон на ПЭВМ производится расчет, в результате которого формируется числовой массив, каждый элемент которого сопоставлен элементу строительной площадки и представляет собой восьмиразрядное двоичное число, каждый бит которого предназначается для управления соответствующим механизмом крана.

Сформированный массив данных записывается в перепрограммируемое постоянное запоминающее устройство (ППЗУ) блока параметров строительной площадки, который устанавливается в блок управления системы координатной защиты.

В блоке управления, расположенном в кабине крана, по сигналам от датчиков положения крана на подкрановом пути, азимутального положения стрелы, вылета и высоты подъема груза определяется пространственное положение крана и его рабочих органов на строительной площадке. По совокупности этих параметров из ППЗУ считывается соответствующий элемент массива, который содержит информацию о разрешенных и запрещенных движениях крана и его органов.

Разделение функций ввода информации и предварительного расчета на ПЭВМ позволяет резко упростить аппаратуру, устанавливаемую на кране, так как отпадает необходимость в сложном и малонадежном устройстве ввода (клавиатуре), сложном решающем устройстве и универсальном устройстве отображения информации. Кроме того, снижаются требования к квалификации работников, обслуживающих аппаратуру на кране.

На чертеже показана структурная схема системы координатной защиты башенного крана.

Система содержит аналоговые датчики положения крана на подкрановом пути 1, азимутального положения стрелы 2, вылета груза 3 и высоты подъема груза 4. Сигналы датчиков 1-3 коммутируются аналоговым мультиплексором 5 на вход аналого-цифрового преобразователя (АЦП) 7, преобразующего аналоговые сигналы датчиков в двоичный код. С выхода АЦП цифровой код поступает на входы регистров 9, 10, при этом в регистр 9 записывается код положения крана на подкрановом пути, а в регистр 10 — код углового положения стрелы крана. Совокупность этих параметров однозначно определяет пространственное положение крана и его стрелы на строительной площадке и используется в качестве адресных сигналов для ППЗУ 11, в котором хранится информация о сигналах управления приводами крана, а также сигналах предупреждения о вхождении крана в опасную зону. Эта информация из ППЗУ 11 переписывается в выходной регистр 13. Кроме того, в ППЗУ 11 содержится информация о допустимом вылете груза для всех возможных положений крана на подкрановой площадке, которая сравнивается с текущим значением вылета на схеме сравнения 12. Если текущий вылет груза больше допустимого, то в соответствующий разряд выходного регистра 13 записывается сигнал блокировки работы привода вылета. Сигналы с выходного регистра подаются на блок 14 управления приводами крана. При попадании конца стрелы крана или груза в опасную зону система формирует общий предупредительный сигнал для крановщика, а в тех случаях, когда стрела крана или груз попадают в запрещенную зону, формируются сигналы блокировки приводов крана. При этом система не запрещает включать приводы, позволяющие вывести кран из запрещенной зоны.

Канал обработки высоты подъема груза обеспечивает оперативное задание требуемого значения высоты в зоне ее ограничения. Это достигается тем, что в соответствии со значениями вылета груза и азимутального положения стрелы из ППЗУ выбирается код управления аналоговым коммутатором 6, который соответствует номеру зоны ограничения высоты. Этот управляющий код подключает к аналоговому компаратору 8 один из резисторов, с помощью которых производится задание уровня высоты h1-h3. На второй вход компаратора поступает сигнал с выхода датчика высоты подъема груза 4. Если высота груза превышает заданный уровень (h1-h3), на выходе компаратора 8 формируется сигнал управления, который записывается в выходной регистр 13 и далее передается в блок управления приводами крана 14.

Читайте также:  Тойота аурис датчик абс замена

4 Перечень фигур чертежей и иных материалов.

На представленном чертеже приведена структурная схема системы координатной защиты башенного крана, где (1) — датчик положения крана на подкрановом пути, (2) — датчик азимутального положения стрелы, (3) — датчик вылета, (4) — датчик высоты подъема груза, (6) — устройство ввода уровня допустимой высоты положения груза (h1, h2, h3), (5) — аналоговый мультиплексор, (7) — аналого-цифровой преобразователь, (9) — регистр положения крана на подкрановом пути, (10) — регистр углового положения стрелы крана, (11) — ППЗУ блока параметров строительной площадки, (12) — схема сравнения, (6) — аналоговый коммутатор задания уровня высоты, (8) — аналоговый компаратор, (13) — выходной регистр, (14) — блок управления приводами крана.

5 Сведения, подтверждающие возможность осуществления изобретения.

Устройство в соответствии с приведенным описанием может быть реализовано с использованием цифровых микросхем как малой и средней степени интеграции, так и большой, в частности микроконтроллеров. В качестве ППЗУ можно использовать микросхемы флэш-памяти или оперативной памяти, сохраняющие информацию при выключении питания и обладающие необходимым для решения задачи объемом.

В качестве датчиков положения крана и его рабочих органов могут быть использованы резистивные (или другого типа) датчики, широко используемые в настоящее время, например, в ограничителях грузоподъемности подъемных кранов.

Специальное программное обеспечение может быть разработано с помощью одной из широко распространенных систем программирования.

Система автоматической координатной защиты была реализована и испытана в рабочих условиях на башенных кранах типа КБМ-401П и КБ-473. Блок управления был выполнен на микросхемах серий К561, КР1554, а в качестве микросхем ППЗУ были использованы микросхемы флэш-памяти типа AD29С010А (128К×8). Испытания показали полную работоспособность системы в соответствии с предъявленными требованиями. Ввод информации в ПЭВМ выполнялся в соответствии с описанием на специализированное ПО, причем эта работа может быть выполнена специалистом со средним техническим образованием, знакомым с работой на ПЭВМ.

1. Способ автоматической координатной защиты подъемного башенного крана, работающего в стесненных условиях, в котором для определения положения крана и его элементов используют датчики, размещенные на крановых механизмах, отличающийся тем, что назначают зоны с разными типами ограничений движения крана и его элементов, а функции по вводу информации об указанных зонах и расчетам для формирования признаков блокирования приводов крана и функции по определению местоположения крана и его элементов на строительной площадке и выдаче сигналов управления приводами для предотвращения опасных движений крана выполняют раздельно, при этом ввод информации о расположении объектов на строительной площадке в соответствии с планом производства работ производят с помощью ПЭВМ, не входящей в приборный комплекс системы координатной защиты башенного крана и снабженной соответствующим программным обеспечением, с помощью ПЭВМ в соответствии с зонами ограничений разного типа, имеющими конфигурацию и расположение соответствующими конфигурации и расположению объектов на строительной площадке и подразделяющимися на зону без ограничений, зону с ограничением по любому элементу стрелы, зону с ограничением по вылету груза, зону с ограничением по высоте подъема груза, запретная зону ограничения по любому элементу стрелы, запретную зону ограничения по вылету груза, опасную зону с выдачей предупреждающего звукового сигнала, рассчитывают и формируют числовой массив с элементами, сопоставленными элементам строительной площадки и представляющими собой восьмиразрядные двоичные числа, в которых каждый бит предназначен для управления соответствующим механизмом крана, после чего полученный массив чисел записывают в перепрограммируемое запоминающее устройство (ППЗУ) блока параметров строительной площадки, устанавливаемого в блок управления системы координатной защиты, которым по сигналам от датчиков положения крана на подкрановом пути, азимутального положения стрелы, вылета и высоты подъема груза определяют пространственное положение крана и его рабочих органов и по совокупности этих параметров формируют сигналы управления приводами крана.

2. Система автоматической координатной защиты подъемного башенного крана, работающего в стесненных условиях, содержащая комплект датчиков положения крана и его рабочих органов и блок управления, предназначенный для формирования сигналов управления приводами крана, отличающаяся тем, что в нее введены датчики положения крана на подкрановом пути, азимутального положения стрелы, вылета и высоты подъема груза, устройство ввода уровней допустимой высоты, датчики положения крана на подкрановом пути, азимутального положения стрелы, вылета положения груза, аналоговый

мультиплексор для поочередного считывания сигналов датчиков, аналого-цифровой преобразователь для преобразования аналоговых сигналов датчиков в цифровой двоичный код, регистры положения крана на подкрановом пути и углового положения стрелы крана для однозначного определения положения крана и его стрелы на строительной площадке, ППЗУ блока параметров строительной площадки для хранения сигналов управления приводами крана, выходной регистр, схему сравнения текущего значения вылета груза с допустимой величиной, считываемой из ППЗУ, аналоговый коммутатор задания уровней высоты, аналоговый компаратор для формирования сигнала превышения грузом допустимой высоты и блок управления приводами крана, обеспечивающий определение положения крана и его стрелы на подкрановой площадке, высоту нахождения груза и считывание по этим параметрам информации из ППЗУ о разрешенных движениях, используемой для блокирования приводов крана и обеспечения его безопасной работы.

Источник

Adblock
detector