Меню

Cu50 датчик температуры сопротивление

Термины и определения

Температура (от лат. temperatura — надлежащее смешение, нормальное состояние) — физическая величина, характеризующая состояние термодинамического равновесия системы. Так, определяемая температура всегда положительна, ее называют абсолютной температурой или температурой по термодинамической температурной шкале (обозначается — Т). За единицу абсолютной температуры в СИ принят Кельвин (К). Значение температуры по шкале Цельсия (t, °C) связано с абсолютной температурой соотношением t = T – 273,15К (1 °C = 1 °К).

Термометрия — раздел прикладной физики , посвященный разработке методов и средств измерения температуры. Термометрия также является разделом метрологии , в ее задачу входит обеспечение единства и точности температурных измерений:

  • установление температурных шкал;
  • создание эталонов;
  • разработка методик градуировки и поверки приборов для измерения температуры.

Термопреобразователь сопротивления (термометр сопротивления)

Термопреобразователь сопротивления (термометр сопротивления, ТС) — прибор для измерения температуры, действие которого основано на изменении электрического сопротивления металлов и полупроводников при изменении их температуры. Проводник обычно изготавливается из меди или платины.

Преимущества термометров сопротивления:

  • Высокая точность измерения (обычно около 0,1 °C);
  • Высокая надежность при использовании 4-проводной схемы измерения.

Недостатки термометров сопротивления:

  • Низкий диапазон измерения температур.

Термопара — термоэлектрический датчик, состоящий из двух соединенных разнородных электропроводных элементов (обычно — металлических проводников, реже — полупроводников). Действие термопары основано на эффекте Зеебека — явлении возникновения ЭДС (термоЭДС) в электрической цепи, состоящей из последовательно соединенных разнородных проводников, контакты между которыми находятся при различных температурах.

Принцип действия термопары основан на том, что нагревание или охлаждение контактов между проводниками, отличающимися химическими свойствами, сопровождается возникновением термоэлектродвижущей силы (термоЭДС). Термопара состоит из двух металлов, сваренных на обоих концах. Один конец помещается в месте замера температуры. Второй спай термостатируется, или измеряется его температура и погрешность вычитается расчётным способом.

Метрологической характеристикой теромопары является градуировочная таблица в которой указана температура «горячего» конца теромопары, и термоЭДС, развиваемая термопарой при этой температуре, при этом необходимо учитывать температуру «холодного» конца термопары и термоЭДС, развиваемую на нём необходимо вычесть из термоЭДС «горячего» конца термопары.

  • Большой температурный диапазон измерения;
  • Измерение высоких температур до 2500 °C.

  • Точность более 1 °C труднодостижима, необходимо использовать термометры сопротивления или термисторы;
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку.

Термоэлектрический преобразователь (ТП)

Термоэлектрический преобразователь (ТП) — прибор для измерения температуры, у которого чувствительным элементом является термопара.

Номинальные статические характеристики (НСХ) термометров сопротивления

В зависимости от номинального значения сопротивления при 0 °C (R 0 ) и номинального значения отношения сопротивления W 100 условное обозначение номинальной статической характеристики (НСХ) для термопреобразователей сопротивления должно соответствовать указанному в таблице:

Тип ТС Номинальное значение сопротивления
при 0 °C, R 0 , Ом
Условное обозначение номинальной статической характеристики преобразования (НСХ)
в народном хозяйстве СНГ международное
Платиновый W 100 = 1,3850 W 100 = 1,3910
1 Pt1 Pt’1
10 10П Pt10 Pt’10
50 50П Pt50 Pt’50
100 100П Pt100 Pt’100
500 500П Pt500 Pt’500
Медный W100 = 1,4260 W100 = 1,4280
10 10М Cu10 Cu’10
50 50М Cu50 Cu’50
100 100М Cu100 Cu’100
Никелевый 100 100Н Ni100

Номинальные статические характеристики (НСХ) термопар

НСХ термопары — номинально приписываемая термопаре данного типа зависимость термоэлектродвижущей силы (термоЭДС) от температуры рабочего конца и при постоянно заданной температуре свободных концов, выраженная в милливольтах (мВ).

Хромель — сплав, состоящий из следующих элементов: Cr (8,7—10%); Ni (89—91%); примеси Si, Cu, Mn, Co.

Алюмель — сплав, состоящий из следующих элементов: Ni (93—96%); Al (1,8—2,5%); Mn (1,8—2,2%); Si (0,8—1,2%).

Копель — сплав, состоящий из следующих элементов: Ni (43—44%); Fe (2—3%); остальное Cu.

Чувствительный элемент (ЧЭ)

Чувствительный элемент (ЧЭ) — элемент ТС, воспринимающий и преобразующий тепловую энергию в другой вид энергии для получения информации о температуре.

Термометрическая вставка — ЧЭ, помещенный в защитный чехол; может применяться как самостоятельное изделие, так и в составе ТС.

Диапазон измеряемых температур

Диапазон измеряемых температур — интервал температур, в котором выполняется регламентируемая функция термопреобразователя сопротивления и термоэлектрического преобразователя по измерению.

Длина монтажной части для преобразователя температуры (влажности) — расстояние от рабочего конца защитной арматуры до опорной плоскости (штуцера, фланца и т.п.).

Длина наружной части — расстояние от опорной плоскости (штуцера, фланца и т.п.) до верхней части головки.

Погрешность — разность Х–А, где А — данное число, которое рассматривается как приближенное значение некоторой величины, точное значение которой равно Х. Разность Х–А называется также абсолютной погрешностью . Отношение Х–А к А называется относительной погрешностью числа А.

Показатель тепловой инерции

Показатель тепловой инерции — время, необходимое для того, чтобы при внесении ТС или ТП в среду с постоянной температурой разность температуры среды и любой точки внесенного в нее ТС или ТП стала равной 0,37 того значения, которое будет в момент наступления регулярного теплового режима (равновесия).

Относительная влажность — отношение давления водяного пара, содержащегося в газообразной среде, к давлению насыщенного пара при той же температуре. Выражается в процентах (%).

Абсолютная влажность — количество водяного пара, содержащегося в 1 м 3 газообразной среды. Измеряется в г/м 3 .

Объемное влагосодержание — отношение объема водяного пара к общему объему газа.

Источник

Термосопротивления: Теория

Недавно мне повезло побывать на производстве датчиков температуры, а точнее на швейцарском предприятии IST-AG, где делают платиновые и никелевые термосопротивления (RTD).

По этому поводу публикую две статьи, в которых читатель найдет довольно подробное описание этого типа датчиков, путеводитель по основным этапам производственного процесса и обзор возможностей, которые появляются при использовании тонкопленочных технологий.

В первой статье разбираемся с теоретической базой. Не слишком увлекательно, но весьма полезно.

Что такое термометры сопротивления

(они же — термосопротивления или RTD)
Сначала имеет смысл разобраться с терминологией. Если вы хорошо знакомы с вопросом, то смело переходите ко второй части статьи. А может быть и сразу к третьей.

Итак, под определение «датчик температуры» попадают тысячи самых разных изделий. Под датчиком можно понимать и готовое измерительное устройство, где на дисплее отображается значение температуры в градусах, и интегральную микросхему с цифровым сигналом на выходе, и просто чувствительный элемент, на базе которого строятся все остальные решения. Сегодня мы говорим только о чувствительных элементах, которые, впрочем, тоже будем называть словом «датчик».

Термометры сопротивления, которые также известны как термосопротивления и RTD (Resistance Temperature Detector) — это чувствительные элементы, принцип работы которого хорошо понятен из названия — электрическое сопротивление элемента растет с увеличением температуры окружающей среды и наоборот. Вероятно вы слышали о термосопротивлениях как о платиновых датчиках температуры типа Pt100, Pt500 и Pt1000 или как о датчиках 50М, 50П, 100М или 100П.

Иногда термосопротивления путают с термисторами или термопарами. Все эти датчики используются в похожих задачах, но, даже несмотря на то что термисторы тоже являются преобразователями температура-сопротивление, нельзя путать термосопротивления, термисторы и термопары между собой. О разнице в строении и назначении этих элементов написана уже тысяча статьей, так что я, пожалуй, не буду повторяться.

Отмечу главное: средний термометр сопротивления стоит в разы дороже, чем средний термистор и термопара, но только термосопротивления имеют линейную выходную характеристику. Линейность характеристики, а также гораздо более высокие показатели по точности и повторяемости результатов измерений, делают термосопротивления востребованными несмотря на разницу в цене.

Основные характеристики термосопротивлений

Если коротко, характеристики термосопротивлений можно разбить на три группы:

  1. Номинальная статическая характеристика (НСХ) и точность
  2. Диапазон температур, на котором определяется НСХ и обеспечивается заявленная точность
  3. Корпус датчика, тип и длина выводов

На мой взгляд, пояснений требует только первый пункт.

Номинальная статическая характеристика (НСХ)

НСХ — это функция (на практике чаще таблица значений), которая определяет зависимость сопротивление-температура.

Зависимость R(T), конечно, не является абсолютно линейной — на самом деле выходная характеристика термосопротивления описывается полиномом с известными коэффициентами. В простейшем случае это полином второй степени R(T) = R0 (1 + A x T + B x T 2 ), где R0 — номинальное сопротивление датчика, то есть значение сопротивления при 0°C.


Вид полинома и его коэффициенты описываются в различных национальных и международных стандартах. Действующий российский стандарт — ГОСТ 6651-2009. В Европе чаще используют DIN 60751 (он же IEC-751), однако одновременно с ним действует DIN 43760, в Северной Америке популярен стандарт ASTM E1137 и так далее. Несмотря на то что некоторые стандарты согласованы между собой, в целом картина довольно печальная и единого индустриального стандарта по факту не существует.

Наиболее популярные типы термосопротивлений — это платиновые датчики (Pt 3850, Pt 3750, Pt 3911 и др.), никелевые (Ni 6180, Ni 6720 и др.) и медные термосопротивления, например Cu 4280. Каждому типу датчиков соответствует свой полином R(T).


Приведенные наименования содержат название металла, который используется при изготовлении датчика, и коэффициент, который описывает отношение сопротивления датчика при 0 к сопротивлению при 100°C. Этот коэффициент, вместе со значением R0, определяет наклон функции R(T).


В разношерстных стандартах и, как следствие, в спецификациях на конкретные датчики, этот коэффициент может выражаться по-разному. Например, для платинового датчика может быть указан коэффициент альфа равный 0.00385 °C -1 , или температурный коэффициент 0.385%/°C, или TCR = 3850 ppm/K, однако во всех трех случаях подразумевается одна и та же зависимость R(T).

Используемый металл однозначно определяет степень полинома R(T), а коэффициенты полинома определяются температурным коэффициентом металла.

Например, для всех платиновых датчиков функция R(T) имеет следующий вид:

R(T) = R0 (1 + A x T + B x T 2 ) при T > 0
R(T) = R0 (1 + A x T + B x T 2 + C x (T-100) x T 3 ) при T -3 °C -1
B = -5.775 x 10 -7 °C -2
C = -4.183 x 10 -12 °C -4

  • Pt 3911 ppm/K (характеристика остается востребованной в РФ, т.к. в прошлом только она была внесена в ГОСТ)
    A = 3.9692 x 10 -3 °C -1
    B = -5.829 x 10 -7 °C -2
    C = -4.3303 x 10 -12 °C -4
  • Автомобильному стандарту Pt 3770 ppm/K, американскому Pt 3750 ppm/K или японскому Pt 3916 ppm/K будут соответствовать другие наборы коэффициентов.

    Та же логика действует для меди и никеля. Например, НСХ всех никелевых датчиков описывается полиномом шестой степени:

    R(T) = R0 (1 + A x T + B x T 2 + C x T 3 + D x T 4 + E x T 5 + F x T 6 )
    где коэффициенты определяются температурным коэффициентом никеля (Ni 6180 ppm/K, Ni 6720 ppm/K и т.д.).

    Осталось сказать о последнем параметре НСХ термометров сопротивления — о номинальном сопротивлении R0. Чаще всего используются датчики со стандартным R0 — 50, 100, 500 или 1000 Ом, однако иногда требуются тремосопротивления с R0 = 2000 и даже 10000 Ом, а также датчики с «не кратным» номинальным сопротивлением.


    То есть каждому типу термосопротивления может соответствовать несколько НСХ с разными номинальными сопротивлениями R0. Для наиболее распространенных в РФ характеристик используют стандартные обозначения: Pt100 и Pt1000 соответствуют платине с температурным коэффициентом 3850 ppm/K и R0 = 100 и 1000 Ом соответственно. Унаследованные из советских справочников обозначения 50П и 100П — это датчики из платины с коэффициентом 3911 ppm/K и R0 = 50 и 100 Ом, а датчики известные как 50М и 100М — это медь 4280 ppm/K с номинальным сопротивлением 50 и 100 Ом.

    Точность датчика
    Точность термосопротивления — это то, насколько зависимость R(T) реального датчика может отклониться от идеальной НСХ. Для обозначения точности термосопротивлений используют понятие класса допуска (от же класс точности).

    Класс допуска определяет максимальное допустимое отклонение от номинальной характеристики, причем задается это отклонение как функция температуры — при нуле градусов фиксируется наименьшее допустимое отклонение, а при уменьшении или увеличении температуры диапазон допустимых значений линейно увеличивается.


    Когда дело касается классов допуска, бардак в действующих стандартах только усугубляется — даже названия классов в разных источниках могут отличаться.

    Другие названия Допуск, °С
    Класс АA Class Y
    1/3 DIN
    1/3 B
    F 0.1 (если речь о тонкопленочном датчике)
    W 0.1 (если речь о намоточном датчике)
    ±(0.1 + 0.0017 |T|)
    Класс A 1/2 DIN
    1/2 B
    F 0.15 (если речь о тонкопленочном датчике)
    W 0.15 (если речь о намоточном датчике)
    ±(0.15 + 0.002 |T|)
    Класс B DIN
    F 0.3 (если речь о тонкопленочном датчике)
    W 0.3 (если речь о намоточном датчике)
    ±(0.3 + 0.005 |T|)
    Класс C Class 2B
    Class BB
    F 0.6 (если речь о тонкопленочном датчике)
    W 0.6 (если речь о намоточном датчике)
    ±(0.6 + 0.01 |T|)
    Class K
    1/10 DIN
    ±(0.03 + 0.0005 |T|)
    Class K
    1/5 DIN
    ±(0.06 + 0.001 |T|)

    Приведенные в таблице допуски соответствуют большинству действующих стандартов для платиновых датчиков 3850 ppm/K, включая ГОСТ и европейский DIN 60751 (IEC-751), который с большой натяжкой можно назвать общепринятым.

    Например, в американском стандарте ASTM E1137 классы допуска платиновых датчиков именуются Grade и определяются иначе:

    Grade A ±(0.25 + 0.0042 |T|)
    Grade B ±(0.13 + 0.0017 |T|)

    Если же говорить о платине с другими температурными коэффициентами или о никелевых и медных датчиках, то можно обнаружить и другие определения допусков.

    Класс допуска описывает не только максимальную величину допуска, но и диапазон температур, на котором этот допуск гарантируется. Вы, наверное, уже догадались, что в разных стандартах эти диапазоны могут существенно отличаться. Это действительно так, причем диапазон температур зависит не только от класса допуска и типа датчика, но и от технологии, по которой выполнен датчик — у намоточных датчиков диапазон всегда шире.

    О том, что такое намоточные и тонкопленочные датчики — чуть ниже.

    На картинке — кассы допуска для платиновых датчиков с температурным коэффициентом 3850 по стандарту DIN 60751 (IEC-751).

    Тонкопленочный датчик Pt 3850 ppm/K Намоточный датчик Pt 3850 ppm/K
    Класс допуска Диапазон температур Класс допуска Диапазон температур
    DIN 60751 (IEC-751) / ГОСТ DIN 60751 (IEC-751) ГОСТ
    Класс АА
    (F 0.1)
    0… +150°С Класс АА
    (W 0.1)
    -100… +350°С -50… +250°С
    Класс А
    (F 0.15)
    -30… +300°С Класс А
    (W 0.15)
    -100… +450°С
    Класс B
    (F 0.3)
    -50… +500°С Класс B
    (W 0.3)
    -196… +600°С -196… +660°С
    Класс С
    (F 0.6)
    -50… +600°С Класс С
    (W 0.6)
    -196… +600°С -196… +660°С

    К слову, если в документации на термосопротивление указан диапазон измеряемых температур, который шире диапазона, предусмотренного указанным классом допуска, то заявленный класс допуска не будет действовать на всём рабочем диапазоне. Например, если датчик Pt1000 класса A предназначен для измерения температур от -200 до +600°C, то он будет иметь точность ±(0.15+0.002|T|) только при температурах до +300°C, а дальше скорее всего будет обеспечиваться класс В.

    Я привожу все эти подробности о терминологии и разночтениях в стандартах чтобы донести одну простую мысль: выбирая термосопротивление легко запутаться и неверно истолковать характеристики элемента. Важно понимать какие именно требования вы предъявляете к элементу (в абсолютных цифрах, а не в классах) и сравнивать их с абсолютными цифрами из документации на конкретный датчик.

    Структура термометров сопротивления

    Итак, термосопротивления представляют собой резисторы, выполненные из платины или, реже, из никеля или меди. Выше уже упоминались две технологии — намоточная (проволочная) и тонкопленочная.

    Намоточные датчики — это термосопротивления, выполненные на основе спиралей из металлической проволоки. Существует два основных способа изготовления намоточных датчиков. В первом случае проволока наматывается на стеклянный или керамический цилиндр, после чего конструкция покрывается изолирующим слоем из стекла. Второй способ — это помещение металлических спиралей в каналы внутри керамического цилиндра.

    При изготовлении тонкопленочных датчиков на керамическую подложку напыляется тонкий слой металла, который образует токопроводящую дорожку, так называемый меандр. После этого датчик покрывается изолирующим слоем из стекла.


    Большинство современных термосопротивлений выполняется по одной из этих трёх технологий. В источниках встречаются противоречивые мнения о том, какая конструкция более устойчива к вибрациям или перепадам температур. Оценки стоимости датчиков разных конструкций тоже сильно разнятся.

    На деле принципиальных отличий между характеристиками датчиков разной конструкции нет, цены на тонкопленочные и намоточные датчики также находятся в одном диапазоне.

    В большинстве случаев совершенно не важно как именно устроен датчик — при выборе компонента имеет значение только соотношение цены и характеристик конкретного элемента (нужно только не забывать что классы допуска для тонкопленочных датчиков определены на более узком диапазоне температур). Однако в некоторых задачах тонкопленочные датчики осознанно предпочитают намоточным. На это есть три главных причины:

      Высокие номинальные сопротивления. Тонкопленочная технология позволяет производить датчики с R0=1000 Ом той же ценой, что и датчики с номинальным сопротивлением 50, 100 или 500 Ом. К тому же, изготавливаются датчики и с более высоким номинальным сопротивлением, например 2000 и 10000 Ом.

    Малый размер. Тонкопленочный датчик можно сделать гораздо более миниатюрным по сравнению с намоточным. Стандартный датчик Pt1000, например, может иметь габариты всего 1.6 x 1.2 мм.

  • Прямоугольная форма и миниатюрный размер пленочных датчиков позволяют выпускать не только выводные термосопротивления, но и SMD-компоненты стандартных размеров — 1206, 0805 и так далее.
  • У тонкопленочной технологии есть и другие интересные свойства, позволяющие, например, сократить время отклика датчика температуры или изготовить на базе термосопротивлений датчики скорости потока. Об этом будем говорить в следующей статье, которая полностью посвящена процессу изготовления тонкопленочных датчиков.

    Заключение

    В заключении традиционно благодарю читателя за внимание и напоминаю, что вопросы по применению продукции, о которой мы пишем на хабре, можно также задавать на email, указанный в моем профиле.

    upd #1: Статья «Термосопротивления: производственный процесс» опубликована.

    Источник

    Читайте также:  Калибровка датчиков xiaomi dreame а9
    Adblock
    detector