Меню

Датчик касания устройство датчика

Сенсорный датчик прикосновения. Схема и подробное описание

Как известно, сенсорный датчик прикосновения — любая металлическая поверхность, например, металлический предмет, пластина или дверная ручка. У сенсоров отсутствуют механические элементы, что в свою очередь придает им значительную надежность.

Сфера использования подобных устройств достаточно широка это и включение звонка, выключатель света, управление электронными устройствами, сигнализация для дома, группа датчиков сигнализаций и прочее. Когда это необходимо, использование сенсорного датчика позволяет обеспечить скрытое размещение включателя.

Описание работы сенсорного датчика прикосновения

Функционирование ниже приведенной схемы сенсора основывается на применении имеющегося в домах электромагнитного поля, которое создает размещенная в стенах электропроводка.

Прикосновение к датчику сенсора рукой равносильно подсоединению антенны к чувствительному входу усилителя. В результате этого наведенное сетевое электричество поступает на затвор полевого транзистора, который играет роль электронного переключателя.

Данный сенсорный датчик прикосновения достаточно прост вследствие применения полевого транзистора КП501А (Б, В). Данный транзистор обеспечивает пропускание тока до180 мА при предельном напряжении исток-сток до 240В для буквы А и 200В для букв Б и В. Для защиты от статического электричества на его входе имеется диод.

Полевой транзистор обладает большим входным сопротивлением, и для того чтобы управлять им хватает статического напряжения, которое больше порогового значения. Для данного типа полевого транзистора номинальное пороговое напряжение составляет 1…3 В, а максимально допустимое равно 20 В.

При прикосновении рукой к датчику Е1, степень наведенного потенциала на затворе является достаточной для открывания транзистора. При этом на стоке VT1 будут электрические импульсы продолжительностью 35 мс, и имеющие частоту электрической сети 50 Гц. Для переключения большинства электромагнитных реле необходимо всего 3…25 мс. Для предотвращения дребезга контактов реле, в момент прикосновения, в схему включен конденсатор C2. За счет накопленного заряда на конденсаторе, реле будет включенным даже в тот полупериод сетевого напряжения, когда VT1 будет закрыт. Пока есть прикосновение к датчику сенсора, реле будет во включенном состоянии.

Конденсатор C1 увеличивает помехоустойчивость сенсора к высокочастотным радиопомехам. Менять чувствительность прикосновения к сенсору можно путем изменения емкости C1 и сопротивления R1. Группа контактов К1.1 осуществляет управление внешними электронными устройствами.

Добавив к данной схеме триггер и узел коммутации сетевой нагрузкой можно получить сенсорный выключатель света.

Источник

Что такое датчик касания

Датчик касания Lego EV3

Датчик касания Lego EV3 является одним из самых простых датчиков.В самом начале нужно разобраться что такое датчики и для чего они нужны. Большинство датчиков являются попыткой скопировать органы чувств человека и животных.

датчик касания

В случае с конструкторами Lego датчики получают какую-то информацию от окружающей среды. Затем полученный сигнал преобразуется в удобную для обработки форму.

То есть датчик — это какой-то преобразователь. Он преобразует контролируемую величину в сигнал, который мы можем использовать для своих целей. Датчики широко используются в роботах и позволяют управлять ими.

Датчик касания Lego EV3 является обычной подпружиненной кнопкой. Очень похожая кнопка у обычных дверных звонков. Когда нажимаешь на кнопку раздается звонок. Если нажатия нет, то контакт под действием пружины возвращается обратно.

кнопка дверного звонка

Такое хорошо всем знакомое устройство как компьютерная мышь также использует датчик касания. В клавишах мыши расположены кнопочные микровыключатели, которые при нажатии издают характерный щелчок.

Читайте также:  Датчик температуры mts 300

мышь для компьютера

Датчик касания Lego EV3 является аналоговым датчиком. Для программирования мы можем использовать три случая:

  1. Кнопка нажата и находится постоянно в этом положении
  2. Кнопка не нажата
  3. Кнопку нажали и отпустили т.е. щелчок

Датчик касания не определяет с какой силой происходит нажатие на кнопку. Но можно осуществлять подсчет нажатий. Часто датчик касания служит для остановки робота на определенном расстоянии от препятствия. Это расстояние может регулироваться закрепленными красной кнопке осями. Для крепления осей есть специальное крестообразное отверстие.

крестообразное крепление датчика касания EV3

Оси имеют различную длину от двухмодульной оси до двенадцатимодульной. В Lego EV3 используется обозначение расстояния в модулях где один модуль равен восьми миллиметрам.

Контроллер Lego EV3

Контроллер Lego EV3 часто называют кирпичом. Кирпич имеет входные порты для датчиков. Они называются порты ввода и обозначаются цифрами 1, 2, 3, 4. Всего четыре входных порта, куда можно подключить четыре датчика.

входные порты

Датчик касания подключается к кирпичу при помощи плоского соединительного кабеля. По умолчанию датчику касания для подключения определен порт под номером 1. Но подключать можно к любому входному порту. Программное обеспечение модуля само автоматически определит порт подключенного датчика.

Где используются датчики касания

Датчики касания часто используются в промышленности. Там они называются концевые выключатели, микровыключатели. Они входят в системы, обеспечивающие безопасность человека при работе на автоматических линиях, различных станках. Как правило они стоят в схеме управления и служат для прерывания работы.

защитные ограждения промышленного оборудования

Например, ограждение шлифовального станка — козырек для защиты глаз от попадания в них искр, стружки, осколков. Если станок работает и козырек поднимается, то размыкается электрическая цепь и работа станка прекращается. При этом часто используется световая и звуковая сигнализация. Это только один из примеров, но их огромное множество и изучать варианты использования датчиков касания нужно в отдельной теме.

Источник

Введение в емкостные датчики прикосновения

В данной статье мы подробно (но не слишком) рассмотрим принципы электричества, которые позволяют нам обнаруживать прикосновение человеческого пальца, используя немного больше, чем просто конденсатор.

Конденсаторы могут быть сенсорными

В течение последнего десятилетия или около того стало действительно трудно представить себе мир с электроникой без сенсорных датчиков прикосновений. Смартфоны являются тому наиболее заметным и распространенным примером, но, конечно, существуют и другие многочисленные устройства и системы, которые обладают датчиками прикосновений. Для построения сенсорных датчиков прикосновений могут использоваться и емкость, и сопротивление; в данной статье мы будем обсуждать только емкостные датчики, которые более предпочтительны в реализации.

Хотя применения, основанные на емкостных датчиках, могут быть довольно сложными, фундаментальные принципы, лежащие в основе данной технологии, достаточно просты. На самом деле, если вы понимаете суть емкости и факторы, которые определяют емкость конкретного конденсатора, вы стоите на правильном пути в понимании работы емкостных сенсорных датчиков прикосновения.

Емкостные сенсорные датчики касания делятся на две основные категории: на основе взаимной емкости и на основе собственной емкости. Первый из них, в котором конденсатор датчика состоит из двух выводов, которые действуют как излучающий и приемный электроды, является более предпочтительным для сенсорных дисплеев. Последний, в котором один вывод конденсатора датчика подключен к земле, является прямым подходом, который подходит для сенсорной кнопки, слайдера или колеса. В данной статье мы рассмотрим датчики на основе собственной емкости.

Читайте также:  Замена фишки датчика холостого хода ваз 2109

Конденсатор на базе печатной платы

Конденсаторы могут быть различных типов. Мы все привыкли видеть емкость в виде компонентов с выводами или корпусов поверхностного монтажа, но на самом деле, всё, что вам действительно необходимо, это два проводника, разделенных изолирующим материалом (т.е. диэлектриком). Таким образом, довольно просто создать конденсатор, используя лишь электропроводные слои, разделенные печатной платой. Например, рассмотрим следующие вид сверху и вид сбоку печатного конденсатора, используемого в качестве сенсорной кнопки прикосновения (обратите внимание на переход на другой слой печатной платы на рисунке вида сбоку).

Изолирующее разделение между сенсорной кнопкой и окружающей медью создает конденсатор. В этом случае, окружающая медь подключена к земле, и, следовательно, наша сенсорная кнопка может быть смоделирована, как конденсатор между сенсорной сигнальной площадкой и землей.

Возможно, сейчас вы захотите узнать, какую емкость реально обеспечивает такая разводка печатной платы. Кроме того, как мы рассчитаем ее точно? Ответ на первый вопрос: емкость очень мала, может составлять около 10 пФ. Что касается второго вопроса: не беспокойтесь, если забыли электростатику, потому что точное значение емкости конденсатора не имеет никакого значения. Мы ищем только изменения в емкости, и мы можем обнаружить эти изменения без знания номинального значения емкости печатного конденсатора.

Влияние пальца

Так что же вызывает эти изменения емкости, которые контроллер датчика прикосновений собирается обнаружить? Ну, конечно же, человеческий палец.

Влияние пальца на сенсорную кнопку

Прежде, чем мы обсудим, почему палец изменяет емкость, важно понимать, что здесь нет прямого электрического контакта; палец изолирован от конденсатора лаком на печатной плате и, как правило, слоем пластика, который отделяет электронику устройства от внешней среды. Так что палец не разряжает конденсатор, и, кроме того, количество заряда, хранимое в конденсаторе в определенный момент, не представляет интереса – скорее интерес представляет емкость в определенный момент.

Итак, почему же присутствие пальца изменяет емкость? Есть две причины: первая включает в себя диэлектрические свойства пальца, а вторая включает в себя его проводящие свойства.

Палец как диэлектрик

Обычно мы думаем о конденсаторе, как имеющем фиксированную величину, определяемую площадью двух проводящих пластин, расстоянием между ними и диэлектрической проницаемостью материала между пластинами. Мы, конечно, не можем изменить физические размеры конденсатора, просто прикоснувшись к нему, но мы можем изменить диэлектрическую проницаемость, так как палец человека обладает диэлектрическими характеристиками, отличающимися от материала (предположительно воздуха), который он вытесняет. Это правда, что палец не будет находиться в настоящей области диэлектрика, т.е. в изолирующем пространстве непосредственно между проводниками, но такое «вторжение» в конденсатор необязательно:

Влияние пальца на сенсорную кнопку в качестве диэлектрика

Как показано на рисунке, чтобы изменить диэлектрические характеристики, нет необходимости помещать палец между пластинами, поскольку электрическое поле конденсатора распространяется в окружающую среду.

Оказывается, что человеческая плоть является довольно хорошим диэлектриком, потому что наши тела состоят в основном из воды. Относительная диэлектрическая проницаемость вакуума равна 1, а относительная диэлектрическая проницаемость воздуха лишь немного выше (около 1,0006 на уровне моря при комнатной температуре). Относительная диэлектрическая проницаемость воды намного выше, около 80. Таким образом, взаимодействие пальца с электрическим полем конденсатора представляет собой увеличение относительной диэлектрической проницаемости, и, следовательно, приводит к увеличению емкости.

Читайте также:  Приора датчик кислорода плавают обороты

Палец как проводник

Любой, кто испытал на себе удар электрического тока, знает, что кожа человека проводит ток. Я уже упоминал выше, что прямого контакта между пальцем и сенсорной кнопкой (то есть ситуации, когда палец разряжает печатный конденсатор) нет. Тем не менее, это не означает, что проводимость пальца не имеет значения. Она на самом деле весьма важна, так как палец становится второй проводящей пластиной в дополнительном конденсаторе:

Влияние пальца на сенсорную кнопку в качестве проводника

На практике мы можем предположить, что этот новый конденсатор, созданный пальцем, подключен параллельно существующему печатному конденсатору. Эта ситуация немного сложнее, потому что человек, использующий сенсорное устройство, электрически не соединен с землей на печатной плате, и, таким образом, эти два конденсатора не включены параллельно в обычном для анализа цепей смысле.

Тем не менее, мы можем думать о человеческом теле, как об обеспечивающем виртуальную землю, поскольку оно имеет относительно большую емкость, чтобы поглощать электрический заряд. В любом случае, нам не нужно беспокоиться о точной электрической связи между конденсатором с пальцем и печатным конденсатором; важным моментом является то, что псевдопараллельное соединение этих двух конденсаторов означает, что палец будет увеличивать общую емкость, так как конденсатор добавляется параллельно.

Таким образом, мы можем увидеть, что оба механизма влияния при взаимодействии пальца и емкостного датчика касания способствуют увеличению емкости.

Близкое расстояние или контакт

Предыдущее обсуждение приводит нас к интересной особенности емкостных датчиков касаний: измеряемое изменение емкости может быть вызвано не только контактом между пальцем и датчиком, но и близким расстоянием между ними. Я обычно думаю о сенсорном устройстве, как о замене механического переключателя или кнопки, но емкостная технология датчиков касаний на самом деле представляет собой новый уровень функциональности, позволяя системе определять расстояние между датчиком и пальцем.

Оба механизма изменения емкости, описанные выше, оказывают влияние, которое зависит от расстояния. Для механизма на базе диэлектрической проницаемости количество «мясного» диэлектрика взаимодействие с электрическим полем конденсатора увеличивается при приближении пальца к проводящим частям печатного конденсатора. Для механизма на базе проводящих свойств емкость конденсатора с пальцем (как и любого другого конденсатора) обратно пропорциональна расстоянию между проводящими пластинами.

Имейте в виду, что этот метода не подходит для измерения абсолютного расстояния между датчиком и пальцем; емкостные датчики не предоставляют тех данных, которые необходимы для выполнения точных вычислений абсолютных расстояний. Я полагаю, что можно было бы откалибровать емкостную сенсорную систему для грубых измерений расстояний, но так как схема емкостных датчиков была разработана для обнаружения изменения емкостей, то отсюда следует, что эта технология особенно подходит для обнаружения изменения в расстояниях, т.е. когда палец приближается или удаляется от датчика.

Заключение

Теперь вы должны точно понимать фундаментальные основы, на базе которых строятся емкостные сенсорные системы. В следующей статье мы рассмотрим методы реализации этих основ, которые помогут вам перейти от теории к практике.

Надеюсь, статья оказалась полезной. Оставляйте комментарии!

Источник

Adblock
detector