Меню

Датчик времени принцип работы

Датчики времени, скорости, тока и положения

Бесконтактные логические элементы

Датчики времени, скорости, тока и положения

Средства управления разомкнутых электроприводов

Для управления электроприводом, в том числе и разомкнутым, необходима информация о текущих значениях скорости, тока, момента и координат, а также о времени. Устройства, которые выдают подобную информацию в виде электрических сигналов, получили название датчиков.

Датчики времени. При построении схем управления ЭП по принципу времени в качестве датчиков используются различные реле времени — электромагнитые, моторные, электронные и механические. Рассмотрим их принцип действия и основные технические характеристики.

Электромагнитное реле времени (рис. 1) состоит из неподвижной части магнитопровода 2, на котором установлена катушка 1; подвижной части магнитной системы — якоря 6 с контактами 8 и 9. При отсутствии напряжения на катушке якорь 6 с помощью пружины 4 удерживается в поднятом положении.

Особенностью конструкции реле времени является наличие в магнитопроводе 2 массивной медной трубки 3 (гильзы), которая обеспечивает выдержку времени при отключении катушки реле источника питания. Рассмотрим этот процесс подробнее.

Реле времени включается, как и обычное электромагнитное реле подачей напряжения на катушку 1 при замыкании контакта 10. При этом якорь 6, притягиваясь к сердечнику, осуществляет без выдержки времени переключение контактов 8 и 9. Необходимая выдержи времени обеспечивается замедлением возврата якоря в исходное положение, так как при снятии с катушки напряжения спадающий магнитный поток создает в гильзе 3 вихревые токи, которые (правило Ленца) своим магнитным потоком поддерживают основной поток. Другими словами, наличие гильзы замедляет (демпфирует) спад магнитного потока, а значит, и перемещение якоря и контактной системы в исходное (отключенное) положение. Таким образом обеспечивается выдержка времени при размыкании замыкающего контакта и замыкании размыкающего контакта (см. рис. 1, б).

Выдержка времени может регулироваться ступенчато за счет латунной немагнитной прокладки 7 определенной толщины, устанавливаемой на якоре 6 (уменьшение толщины прокладки вызывает увеличение выдержки реле и наоборот), или плавно за счет изменения натяжения пружины 4 с помощью гайки 5.

Рисунок 1 – Электромагнитное реле времени (а), контакт замыкающийся и размыкающийся с замедлением при возврате (б)

Выдержку времени электромагнитного реле можно обеспечить без установки гильзы 3, закорачивая катушку после отключения ее от сети. В этом случае замкнутый контур, образованный катушкой и замыкающим ее контактом 11, будет играть роль электромагнитного демпфера. Однако выдержка времени в этом случае получается меньше, чем при использовании гильзы. Реле серии РЭВ, обеспечивают выдержку времени от 0,25 до 5,5 с.

Моторное (электромеханическое) реле времени состоит из специального низкоскоростного двигателя и редуктора с большим передаточным числом, на выходном валу которого имеется рычаг, начальное положение которого устанавливается по шкале уставок времени. Рычаг управляет работой вспомогательных контактов, которыми включается выходное электромагнитное реле. Работает моторное реле времени следующим образом. Начало отсчета времени соответствует подаче напряжения на двигатель, который, включившись, начинает вращаться и медленно поворачивать рычаг на валу редуктора. Через заданное время, определяемое начальным положением, рычаг доходит до вспомогательных контактов и замыкает их, что приводит к включению выходного реле, которое одним из своих контактов отключает двигатель, завершая отсчет выдержки времени.

В электронных реле времени (рис. 2) обычно используются различные полупроводниковые элементы (чаще всего транзисторные) и конденсаторы, время разряда или заряда которых и определяет выдержку времени.

В исходном положении реле внешний управляющий контакт S замкнут и на базу транзистора VT1 подается отрицательный потенциал источника питания GB. Данный транзистор при этом открыт, а потенциал базы транзистора VT2 положительный по отношению к его эмиттеру и он закрыт. В результате выходное реле KV отключено. В исходном положении конденсатор С заряжен с показанной на рисунке полярностью обкладок.

Команда на начало отсчета времени подается при размыкании внешнего управляющего контакта К. После этого начинается разряд конденсатора С через резистор R2 и переход эммитер — база транзистора VT1. В результате разряда конденсатора транзистор VT1 закроется, на базе транзистора VT2 появится отрицательный потенциал и он откроется, при этом по обмотке реле KV начнет протекать ток, оно сработает и переключит свои контакты. Отсчет времени закончится.

Выдержка времени такого реле определяется временем разряда конденсатора С, которое зависит от его емкости и сопротивления резистора R2. Регулируя эти величины, можно установить требуемую выдержку времени реле. Электронные реле времени серии ВЛ обеспечивают выдержку времени от 0,1 с до 10 мин.

В пневматических реле выдержка времени обеспечивается воздушным (пневматическим) замедлителем (демпфером), управляемым с помощью электромагнита. Механическое реле времени основано на механизме аналогично часовому.

Датчики скорости. Информацию о скорости ЭП можно получать, как от различных датчиков скорости, так и от самого двигателя. Скорость двигателей постоянного и переменного тока определяет их электродвижущую силу. Таким образом, используя ЭДС в качестве измеряемой (контролируемой) переменной, можно получить информацию о скорости ЭП.

Читайте также:  Датчик включения вентилятора rover 200

Электромеханическое реле контроля скорости (РКС) работает по принципу асинхронного двигателя. Ротор такого реле (рис.3) представляет собой постоянный магнит, соединенный с валом двигателя, скорость которого измеряется. Постоянный магнит помещен внутри алюминиевого цилиндра 5, имеющего обмотку в виде беличьей клетки. Этот цилиндр может поворачиваться вокруг оси на небольшой угол и переключать с помощью упора 3 контакты 4 и 6. При неподвижном двигателе упор занимает среднее положение и контакты реле находятся в нормальном положении. При вращении двигателя, а следовательно, и магнита 1 даже с небольшой скоростью создается вращающий момент, под действием которого цилиндр 5 поворачивается и обеспечивает с помощью упора 3 переключение контактов 4. При скорости двигателя, близкой к нулю, цилиндр возвращается в среднее положение и контакты 4 переходят в свое нормальное состояние. Скорость, при которой переключаются контакты реле, определяется положением настроечных винтов 2.

Рисунок 3 – Реле контроля скорости (а), тахогенератор (б)

Реле контроля скорости удобно использовать при автоматизации процесса торможения, когда требуется обеспечить отключение двигателя от сети после снижения его скорости до нуля.

Тахогенератор (ТГ) как датчик скорости двигателя обычно применяется в различных схемах управления. Пример его использования в разомкнутой схеме иллюстрирует рисунок 3, б. К якорю 2 тахогенератора подключена обмотка 4 реле напряжения, последовательно с которой включен регулировочный резистор 3. Реле срабатывает при определенной скорости двигателя 1 в зависимости от положения движка реостата 3 и своими контактами осуществляет коммутацию соответствующих цепей управления.

В качестве источника информации о скорости может использоваться якорь двигателя постоянного тока при внесении его в схему тахометрического моста (рис. 4), который образуется резисторами 3 и 2 с сопротивлениями R1 и R2 обмотками якоря 1 с сопротивлением Rя и дополнительных полюсов 4 (сопротивлением RДП. Если подобрать сопротивления R1 и R2, так, чтобы соблюдалось условие

мост окажется сбалансированным и напряжение на его диагонали (между точками А и Б) не будет зависеть от тока якоря, а будет пропорционально скорости двигателя.

Схема тахометрического моста используется как в замкнутых, так и разомкнутых схемах управления. В последнем случае к точкам А и Б подсоединяется катушка реле.

В некоторых случаях, когда не требуется большая точность, предпочтительной является простота. Сигнал, пропорциональный скорости может сниматься непосредственно со щеток ДПТ или фазного ротора АД.

Центробежное реле скорости, выполненное по принципу центробежного регулятора скорости, вследствие своей громоздкости невысокой надежности в схемах ЭП применяется редко.

Датчики тока. В качестве датчиков тока в релейно-контактных разомкнутых схемах используются главным образом реле тока, их катушки, изготовленные из толстого провода с малым числом витков, непосредственно включаются в цепь контролируемого (регулируемого) тока двигателя. При достижении этим током уровней срабатывания или отпускания происходит коммутация контактов реле тока, которые производят соответствующие переключения в схемах управления двигателем.

Наиболее широко для этих целей применяются реле минимального и максимального токов серий РЭВ 830, РЭВ 312, РТ 40.

Датчики положения. К датчикам положения, которые широко используются в разомкнутых схемах управления ЭП, относятся путевые и конечные выключатели различных типов (рис.5).

Рисунок 5 – Условное графическое и буквенное обозначение путевых выключателей

При достижении ЭП или исполнительным органом рабочей машины определенных положений эти выключатели выдают сигналы, которые затем поступают в цепи управления, защиты и сигнализации. Конечные выключатели применяются для предотвращения выхода исполнительных органов из рабочей зоны (например, моста подъемного крана за пределы подкрановых путей). Путевые выключатели используются для подачи команд управления в схему в определенных точках пути исполнительных органов (например, при подходе кабины лифта к этажу).

Путевые и конечные выключатели могут быть бесконтактными и контактными. Последние в зависимости от вида привода их контактной системы делятся на вращающиеся, рычажные и нажимные.

Вращающиеся путевые и конечные выключатели имеют привод от валика, соединенного с валом двигателя непосредственно или через редуктор. На валике располагаются кулачковые шайбы, воздействующие на контактную систему выключателя при достижении валиком определенного положения. При вращении вала двигателя в определенном его положении кулачковые шайбы осуществляют переключение контактов выключателя.

Рычажные конечные и путевые выключатели имеют привод своей контактной системы от поворотного рычага, соединенного с движущейся частью ЭП или исполнительного органа. Возврат рычага и контактов в исходное положение осуществляется с помощью пружины.

В нажимном выключателе переключение контактов происходит при нажатии на его шток, возврат которого в исходное положение осуществляется под действием пружины. В качестве нажимных выключателей применяются также микропереключатели, у которых при воздействии на шток происходит переключение упругого контакта.

Выпускаемые контактные путевые и конечные выключатели серий КУ 700; ВУ 150 и ВУ 250; ВК 200 и ВК 300; ВПК 1000,2000, 3000 позволяют коммутировать одну или две цепи переменного тока до 10 А и напряжении до 500 В и постоянного тока до 1,5 А при напряжении до 220 В.

Читайте также:  Датчики включения вентилятора ваз 2131

Рисунок 6 – Индукционный датчик положения

Бесконтактный индукционный датчик положения (рис.6) состоит из разомкнутого магнитопровода с катушкой 2, параллельно которой включен конденсатор 6. Катушка с конденсатором в свою очередь включены в цепь переменного тока вместе с обмоткой 4. Когда якорь датчика 3, закрепленный на подвижной части ЭП или исполнительного органа рабочей машины, не замыкает магнитопровод (пунктирное изображение), индуктивное сопротивление катушки мало, в ее цепи проходит большой ток и реле 4 включено. Когда якорь 3 переместится и займет положение над магнитопроводом индуктивное сопротивление катушки 2 возрастет и в цепи (за счет подбора емкости конденсатора 6) наступит резонанс тока и резкое его снижение. Реле 4 в результате снижения тока отключается, вызывает переключение его контактов 5 в цепи управления ЭП.

Потенциометрические, сельсинные и цифровые датчики положения применяются главным образом в замкнутых ЭП.

Источник

Что такое реле времени и как оно работает?

Для обеспечения выдержки защит или построения логических электронных схем в их состав включаются элементы, обеспечивающие задержку срабатывания. В качестве такого элемента большинство современных электрических цепей использует реле времени.

Назначение

Реле времени предназначено для формирования нормируемых временных задержек при работе каких-либо устройств. Такие логические элементы позволяют выстраивать определенную последовательность в переключениях и срабатывании приборов. Благодаря отложенной подаче напряжения производится автоматическое управление выдаваемыми с реле времени сигналами.

Реле времени устанавливают в цепях защит в качестве промежуточного элемента для обеспечения селективности, построения ступеней, сценарных переходов и т.д.

Устройство и принцип работы

Конструктивно реле времени состоит из нескольких элементов, число и функции которых могут существенно отличаться в зависимости от типа реле. Общими блоками являются измерительный, блок задержки и рабочий.

  • Первый из них представлен электромагнитными катушками, полупроводниковыми элементами, микросхемами, реагирующими на поступающие сигналы электрического тока.
  • Блок задержки выполняется часовым механизмом, мостом, электромагнитным или пневматическим демпфером.
  • Рабочий элемент представляет собой контакты или выход из аналоговой или цифровой схемы, контролирующих подачу напряжения в те или иные цепи.

В зависимости от конструктивных особенностей конкретной модели будет отличаться и принцип ее работы.

Принцип действия реле времени заключается в создании временного интервала от начала подачи сигнала на реле времени до получения этого сигнала потребителем. Дальнейшие операции и подача питания на рабочий элемент будет коренным образом отличаться в соответствии с типом устройства, поэтому рассматривать принцип действия следует для каждого вида реле времени отдельно.

С электромагнитным замедлением

Конструктивно такое реле времени состоит из электромагнитной катушки, магнитопровода (ярма), подвижного якоря, короткозамкнутой гильзы и блока отключения, которые представлены на рисунке ниже:

Рис. 1: конструкция электромагнитного реле

Принцип работы электромагнитного реле заключается в создании магнитного потока в магнитосердечнике, наводимого от катушки. Магнитный поток притягивает якорь с контактами. Но, в таком режиме работы устройство представляло бы собой обычное промежуточное реле, поэтому для задержки замыкания контактов используется гильза. Она и создает в короткозамкнутом контуре встречный по направленности электромагнитный поток, задерживающий нарастание основного и обуславливающий выдержку временного промежутка.

Как правило, в электромагнитных моделях задержка составляет от 0,07 до 0,15 секунд, работа устройства осуществляется от цепей постоянного тока.

С пневматическим замедлением

Данный тип применяется в станочном оборудовании различных сфер промышленности, в частных случаях встречаются и гидравлические модели. Такое реле времени состоит из рабочей катушки, посаженной на магнитопровод, контактов и пневматической мембраны или диафрагмы, выполняющей роль демпфера.

Рис. 2: конструкция пневматического реле

Принцип работы пневматического реле времени заключается в том, что при подаче напряжения на обмотку в сердечнике возникает магнитный поток, приводящий его в движение. Но моментальная переброска контактов не происходит за счет наличия воздушного промежутка под мембраной. Время задержки включения будет определяться количеством воздуха в демпфере и скоростью его удаления. Для регулировки этого параметра в пневматических моделях предусматривают винт, увеличивающий или уменьшающий объем камеры или ширину выпускного клапана.

С анкерным или часовым механизмом

Конструктивным отличием реле времени с часовым механизмом является наличие пружинного устройства, которое заводится за счет электрического привода или вручную. Замедление срабатывания для него определяется положением замыкающего флажка на циферблате.

Рис. 3: конструкция реле с часовым механизмом

При появлении управляющего сигнала отпускается механизм, и пружина медленно перемещает рабочий элемент, вращающийся по шкале циферблата. При достижении установленной отметки происходит включение нагрузки путем замыкания пары контактов. Пределы выдержки времени можно выбрать специальными зажимами или установкой регулируемой ручки в определенное положение. Конкретный способ управления будет отличаться в зависимости от модели и производителя.

Моторных реле времени

Отличительной особенностью моторных реле является наличие собственного двигателя, который включается в работу вместе с катушкой. Принцип работы такого устройства приведен на рисунке ниже:

Читайте также:  Не работает датчик заднего хода веста

Рис. 4: конструкция моторного реле

Напряжение подается на электрическую схему, состоящую из катушки 1 и синхронного двигателя 2. После возбуждения обмоток статора в двигателе его вал приводит в движение систему зубчатой передачи 3 и 4, состоящую, как правило, из нескольких шестеренок. Вращение шестерней моторного реле приводит к механическому нажатию на рычаг, прижимающий контакты. Регулировка диапазона выдержки производится за счет перемещения фиксатора 8.

Электронных реле времени

Современные электронные реле представляют собой автоматический выключатель, принцип подачи сигнала с выхода которого регулируется настройкой R – C цепочки, параметрами микросхем или полупроводниковых элементов. Наиболее простым вариантом является совместная работа конденсатора и резистора, приведенная на рисунке ниже:

Рис. 5: принцип логической цепочки электронного реле

В зависимости от соотношения омического сопротивления резистора и емкости конденсатора, время заряда последнего и будет определять подачу напряжения питания в электронном устройстве. В данном примере приведен простейший вариант времязадающей цепочки, современные модели могут содержать более сложные структуры, включающие несколько R – C ветвей или их комбинации с транзисторами, мостами и другими элементами. Электронные модели обладают рядом весомых преимуществ, в сравнении с другими типами реле:

  • Сравнительно меньшие размеры;
  • Высокая точность срабатывания;
  • Широкий диапазон регулировки – от десятых долей секунд до часов или суток;
  • Автоматическое управление – удобная система программирования и ее визуальное отображение на дисплее.

Эти преимущества обуславливают повсеместное вытеснение электронными реле других устаревших моделей.

Цикличных

Под цикличными реле времени подразумевают такие устройства, которые выдают управляющий сигнал через какой-либо заданный промежуток времени (для подогрева чайника, открытия окон сутра, включения сигнализации на ночь и т.д.). Такое автоматическое включение имеет определенный сценарий, повторяющийся через какой-либо промежуток времени, из-за чего эту группу устройств также называют сценарными выключателями. Ранее циклическое включение осуществлялось посредством механического пружинного устройства, сегодня эта функция перешла к микропроцессорным элементам. Электронные таймеры находят широкое применение в самых различных сферах, некоторые из которых приведены на рисунке:

Рис. 6: сфера применения цикличных реле

Как выбрать?

При выборе конкретной модели реле времени необходимо руководствоваться такими принципами относительно их параметров:

  • Род и величина рабочего напряжения – различные модели могут, как подключаться к бытовой сети в 220 В переменного тока, так и работать от пониженных управленческих цепей на 12, 42, 127 В и т.д.
  • Допустимый ток нагрузки – определяет пропускную способность контактов реле времени без их перегрева.
  • Диапазон времени срабатывания контактов и чувствительность регулировки этого параметра – определяет скорость включения реле времени, возможность его изменения в каких-либо пределах и возможный шаг регулировки.
  • Конструктивные особенности и принцип работы – если по местным условиям не допускается классическое переключение контактов по соображениям взрывоопасности, необходимо устанавливать бесконтактные модели.
  • Влагозащищенность и температурный диапазон – определяет допустимые параметры окружающей среды, в которых может эксплуатироваться данное реле времени.
  • Тип устройства (цикличные или промежуточные) – первый из них задает некую периодичность выдаваемого сигнала, а второй выступает в качестве промежуточного звена, обеспечивающего задержку времени в уже существующей цепи.

Примеры схем подключения

В зависимости от конкретной модели реле времени или поставленных задач, которое оно должно решать, схема подключения может коренным образом отличаться.

Рис. 7: пример схемы подключения

Посмотрите на рисунок 7, в данном примере приведен один из простейших вариантов управления осветительными приборами при помощи реле времени. Подача управляющего сигнала осуществляется на выводы 1 и 2, а к нагрузке от вывода 3 и нулевого провода. Клемма 4 получает питание от сети 220В. Данная схема широко используется для бытовых нужд и практически не применяется для промышленных целей, так как обеспечивает работу только с одним потребителем (прибором освещения, линией, сигнализацией и т.д.).

Рис. 8: Еще одна схема подключения реле времени

На рисунке 8 приведена схема включения реле времени, здесь способ питания аналогичен предыдущей схеме. Но на выходе устройства реализовано подключение двух независимых групп потребителей от контактов 3 и 5, которые могут иметь индивидуальную логику работы. Такой способ подключения предоставляет куда больший функционал, за счет чего он применяется в местах, где требуется управление сразу несколькими приборами.

Рис. 9: схема включения реле через контактор

Как видите на рисунке 9, при подключении мощного оборудования, для которого реле времени не может осуществлять его электроснабжение из-за недостаточной проводимости собственных цепей, применяется подключение логического элемента через силовой контактор. В данной схеме рабочим органом выступает контактор, управляющий сигнал на который подается с контактов реле времени. Основным преимуществом такой схемы подключения является возможность запитать потребитель любой мощности и принципа действия.

Источник

Adblock
detector