Меню

Фоторезистор как датчик освещения

Как применять фоторезисторы, фотодиоды и фототранзисторы

Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.

Содержание статьи

Основные виды фотоэлектронных приборов. Общие сведения

Фотоприёмник в общем смысле – это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.

Фоторезисторы – изменяют сопротивление при освещении

Фоторезистор – фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее освещенность чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.

Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.

Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора

Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.

Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.

На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф – темнота, а Ф3 – это яркий свет. Она линейна. Еще одна важная характеристика – это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.

Темновое сопротивление – это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв – это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.

У фоторезисторов есть существенный недостаток – его граничная частота. Это величина описывает максимальную частоту синусоидального сигнала, которым вы моделируете световой поток, при которой чувствительность снижается на 1.41 раз. В справочниках это отражается либо значением частоты, либо через постоянную времени. Она отражает быстродействие приборов, которое обычно занимает десятки микросекунд – 10^(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.

Фотодиод – преобразует свет в электрический заряд

Фотодиод – элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.

Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.

По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.

Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие – это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.

У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием – 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.

В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).

Когда диод не освещается светом – в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света – тем больше ток.

где Sинт – интегральная чувствительность, Ф – световой поток.

Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен – в обратном направлении по отношению к источнику питания.

Другой режим – генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает работу элементов солнечной батареи, но имеют малую мощность.

Фототранзисторы – открываются от количества падающего света

Фототранзистор – это по своей сути биполярный транзистор у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.

Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения – с плавающей базой, когда базовый вывод остаётся незадействованным.

В схему включают фототранзисторы подобным образом.

Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.

Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.

В советское время радиолюбители делали фототранзисторы своими руками – делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.

Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.

Кроме биполярных фототранзисторов существуют и полевые. Биполярные работают на частотах 10-100 кГц, то полевые более чувствительны. Их чувствительность достигает нескольких Ампер на Люмен, и более «быстрые» — до 100 мГц. У полевых транзисторов есть интересная особенность, при максимальных значениях светового потока напряжение на затворе почти не влияет на ток стока.

Области применения фотоэлектронных приборов

В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.

Схема, изображенная выше – это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 – он открывается, и открывает еще один транзистор – VT2. Эти два транзистора – это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.

Диод VD2 – нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока – фаза или ноль).

У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление – тем меньше света нужно для включения схемы.

Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.

Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.

В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.

В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.

Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.

Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.

В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.

Применение для передачи сигналов в электронных схемах

Оптоэлектронные приборы – это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.

Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.

Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.

Рассмотрим пару примеров использования таких приборов.

Управление симистором с помощью микроконтроллера

Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет – на пин микроконтроллера попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.

Обратная связь с помощью оптопары

В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.

В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.

Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.

Источник

Что такое фоторезистор, его устройство и принцип работы

У полупроводниковых материалов есть много интересных свойств. Одно из них – изменение сопротивления под действием света. Электрическое сопротивление полупроводниковых элементов используется в приборах под названием фоторезистор. Управление внутренним сопротивлением полупроводниковых приборов с помощью световых потоков широко применялось в устаревших конструкциях, реже в современной электротехнике.

Полупроводниковый резистор может изменять параметры электрического тока в зависимости от интенсивности освещения. Это свойство часто используют на практике для создания устройств, управляемых потоком излучения.Сегодня промышленность поставляет на рынок фоторезисторы с различными характеристиками, а это значит, что они еще находят применение в современных электротехнических устройствах.

Что такое фоторезистор?

Остановимся более подробно на описании полупроводникового фоторезистора. Для начала дадим ему определение.

Фоторезистор — это полупроводниковый прибор (датчик), который при облучении светом изменяет (уменьшает) свое внутреннее сопротивление.

В отличие от фотоэлементов других типов (фотодиодов и фототранзисторов) данный прибор не имеет p-n перехода. Это значит, что фоторезистор может проводить ток независимо от его направления и может работать не только в цепях постоянного тока, где присутствует постоянное напряжение, но и с переменными токами.

Устройство

Конструкция разных моделей фоторезисторов может отличаться по форме материалу корпуса. Но в основе каждого такого прибора лежит подложка, чаще всего керамическая, покрытая слоем полупроводникового материала. Поверх этого полупроводника наносятся змейкой тонкий слой золота, платины или другого коррозиестойкого металла. (см. рис. 1). Слои наносятся методом напыления.

Напиленные слои соединяют с электродами, на которые поступает электрический ток. Всю эту конструкцию часто покрывают прозрачным пластиком и помещают в корпус с окошком для попадания световых лучей (см. рис. 2).

Рис. 2. Конструкция фоторезистора

Форма корпуса, его размеры и материал зависит от модели фоторезистора, определяемой технологией производителя. Примеры моделей показаны на рисунках 3 и 4.

Рис. 3. Датчик на основе фоторезистора Рис. 4. Фотоприемник

Сегодня в продаже можно увидеть детали в металлическом корпусе, часто в пластике или модели открытого типа. Некоторые модели изготавливают без метода напыления, а вырезают тонкий резистивный слой непосредственно из полупроводника. Существуют также технологии изготовления пленочных фотодатчиков (см. рис. 5).

Рис. 5. Конструкция пленочного фоторезистора

Для напыления слоя полупроводника используют различные фоторезистивные материалы. Для фиксации видимого спектра света применяют селенид кадмия и сульфид кадмия.

Более широкий спектр материалов восприимчив к инфракрасному излучению:

  • германий чистый либо легированный примесями золота, меди, цинка;
  • кремний;
  • сульфид свинца и другие химические соединения на его основе;
  • антимонид или арсенид индия;
  • прочие химические соединения чувствительные к инфракрасным лучам.

Чистый германий или кремний применяют при изготовлении фоторезисторов с внутренним фотоэффектом, а вещества легированные примесями – для конструкций с внешним фотоэффектом. Независимо от вида применяемого фоторезистивного материала, оба типа фоторезисторов обладают одинаковыми свойствами – обратной, нелинейной зависимостью сопротивления от силы светового потока.

Принцип работы

В неактивном состоянии полупроводник проявляет свойства диэлектрика. Для того, чтобы он проводил ток, необходимо воздействие на вещество внешнего стимулятора. Таким стимулятором может быть термическое воздействие или световое.

Под действием фотонов света полупроводник насыщается электронами, в результате чего он становится способным проводить электрический ток. Чем больше электронов образуется, тем меньшее сопротивление току оказывает полупроводниковый материал. Зависимость силы тока от освещения иллюстрирует график на рис. 6.

Рис. 6. График зависимости силы тока от освещения

На этом принципе базируется работа фоторезисторов. Образованию электронов способствует как видимый спектр света так и не видимый. Причем фоторезистор более чувствителен к инфракрасным лучам, имеющим большую энергию. Низкую чувствительность к видимому свету проявляют чистые материалы.

Для повышения чувствительности фоторезистивного слоя его легируют разными добавками, которые образуют обновленную внешнюю зону, расположенную поверх валентной зоны полупроводника. Такое внешнее насыщение электронами потребует меньше энергии для перехода в состояние насыщения фототоком проводимости. Возникает внешний фотоэффект, стимулированный видимым спектром излучения.

Путем подбора легирующих добавок можно создавать фоторезисторы для работы в разных спектральных диапазонах. Фоторезистор имеет спектральную чувствительность. Если длина световых волн находится вне зоны проводимости, то прибор перестает реагировать на такие лучи. Освещенность в таких случаях, уже не может оказывать влияния на токопроводимость изделия.

Выбор спектральных характеристик зависит от условий эксплуатации изделия и решаемых задач. Если интенсивностей излучения не достаточно для стабильной работы устройства, его эффективность можно повысить путем подбора чувствительных элементов, с соответствующим полупроводниковым слоем.

Важно помнить, что инерционность фоторезисторов заметно выше чем у фотодиодов и фототранзисторов. Инерционность прибора имеет место потому, что для насыщения полупроводникового слоя требуется некоторое время. Поэтому датчик всегда подает сигнал с некоторым опозданием.

Обозначение на схеме

Отличить фоторезистор на схеме от обычного резистора достаточно просто. На значке фоторезистора присутствуют две стрелки, направленные в сторону прямоугольника. Эти стрелки символизируют поток света (см. рис. 7). На некоторых схемах символ резистора помещают внутри окружности, а на других обозначают прямоугольником без окружности. Но главное отличие – наличие стрелок.

Рис. 7. Фоторезистор на схеме

Несмотря на разнообразие фотодатчиков их можно разделить всего на два вида:

  1. Фоторезисторы с внутренним фотоэффектом;
  2. Датчики с внешним фотоэффектом.

Они отличаются лишь по технологии производства, а точнее, по составу фоторезистивного слоя. Первые – это фоторезисторы, в которых полупроводник изготавливается из чистых химических элементов, без примесей. Они малочувствительны к видимому свету, однако хорошо реагируют на тепловые лучи (инфракрасный свет).

Фоторезисторы с внешним эффектом содержат примеси, которыми легируют основной состав полупроводникового вещества. Спектр чувствительности у этих датчиков гораздо шире и перемещается в зону видимого спектра и даже в зону УФ излучения.

По принципу действия эти два вида фоторезисторов не отличаются. Их внутреннее сопротивление нелинейно уменьшается с ростом интенсивности светового потока в зоне чувствительности.

Технические характеристики

Какие критерии применять при выборе фоторезистора?

Первым делом обращайте внимание на спектральные характеристики. Если этот параметр вы неправильно выберете, то с большой долей вероятности устройство работать не будет или его функционирование будет нестабильным. Например, фоторезисторы с внутренним эффектом не будут реагировать на дневной свет. Если в качестве облучателя не планируется использовать ИК излучатель, то остановите свой выбор на втором типе приборов.

Другие важные характеристики:

  • интегральная чувствительность;
  • энергетическая характеристика (порог чувствительности);
  • инерционность.

Вольт-амперная характеристика показывает зависимость величины тока от приложенного напряжения. Графически такая характеристика изображается в виде гиперболы. Но если выполняется условие стабильности интенсивности освещения, то ест световой поток Ф = const, то зависимость силы тока от напряжения будет линейной, а график – прямой линией. (см. рис. 8 а).

Энергетическая характеристика показывает, как зависит сила тока от величины светового потока, при постоянном напряжении (см. рис. 8 б). На графике видно как изменяется энергетическая кривая: сначала она устремляется вверх, а при достижении какого-то предела плавно изменяет направление и почти параллельна оси светового потока. Объясняется это тем, что после насыщения полупроводникового элемента его сопротивление минимально и в дальнейшем не зависит от интенсивности света.

Рисунок 8. Характеристики фоторезистора

Что касается инерционности, то она в разной степени присутствует у всех типах датчиков. Если вам нужна молниеносная реакция на свет, то лучше используйте фотодиод.

Преимущества и недостатки

Сильными сторонами фоторезисторов оказывается их высокая надежность и низкая цена. Иногда полезным свойством бывает его вольтамперная характеристика, когда ток возрастает не молниеносно, а постепенно. Достоинством является низкий порог чувствительности.

К недостаткам можно отнести инерционность датчиков. Запаздывание сигнала понижает быстродействие устройств на базе терморезисторов, что часто бывает неприемлемым.

Применение

Благодаря низкому порогу чувствительности фоторезисторы часто используются для регистрации слабых потоков световых волн.

Это качество используется:

  • в сортировальных машинах;
  • в полиграфической промышленности для регистрации факта обрыва бумажной ленты;
  • в сельскохозяйственных машинах для контроля густоты высевания зерновых;
  • в световых реле для включения/отключения освещения, в фотоэкспонометрах и т. п.

В промышленной электронике фоторезисторы применяются для учета изделий, движущихся на ленте транспортера или падающих в емкость для хранения.

Сам по себе датчик не может производить расчёты, но его сигналы используются и обрабатываются микроконтроллерами, с последующими вычислениями. Сигналы фоторезистора воспринимаются как аналоговыми, так и цифровыми логическими схемами. Задержка сигнала на доли секунды в большинстве случаев не является препятствием для использования фоторезисторов.

На базе фоторезисторов производятся оптроны – приборы с собственным источником света, которым можно управлять. Пример схемы такого устройства показан на рис. 9.

Несмотря на некоторые недостатки приборов, эра фоторезисторов видимо еще не закончилась.

Источник

Читайте также:  Термистор автомобильный датчик температуры
Adblock
detector