Меню

Как правильно подобрать датчики давления

Семь критериев выбора датчика давления

Промышленные датчики давления предназначены для измерения давления и последующего преобразования давления контролируемой среды (жидкости или газа) в унифицированный выходной сигнал. Приборы получили широкое распространение в технологических процессах и применяются в различных областях промышленности: пищевая, фармацевтическая, бумажная и д.р.

Существует множество видов датчиков давления, каждый из которых отличается по назначению, специфике применения и конструктивным особенностям. В этой статье мы расскажем, как из огромного количества вариантов выбрать подходящую модель.

Как выбрать датчики давления — 7 основных критериев

На самом деле критериев выбор куда больше семи — именно поэтому рынок датчиков давления не ограничивается парой десятков вариантов, а предлагает сотни различных моделей, от экономичных приборов для нужд ЖКХ до интеллектуальных настраиваемых датчиков с взрывозащитной оболочкой для нефте-газовой промышленности. Но, чтобы разобраться в назначении и пригодности конкретной модификации, понять подойдет ли она для решения задачи, достаточно при выборе учитывать 7 простых критериев:

  1. Тип измеряемого давления.
  2. Тип измеряемой среды.
  3. Диапазон измерений.
  4. Точность измерений (погрешность).
  5. Температура процесса (измеряемой среды).
  6. Выходной сигнал.
  7. Присоединение к процессу.

1. Тип измеряемого давления

По типу измеряемого давления выделяют датчики:

  • Абсолютного давления.
  • Гидростатического давления.
  • Дифференциального давления.
  • Избыточного давления.
  • Избыточного давление-разрежения.
  • Разрежения (вакуумметрического давления).

Датчики абсолютного давления предназначены для измерения величины давления относительно абсолютного вакуума.

Датчики гидростатического давления и змеряют давление столба жидкости, зависящее только от его высоты и от плотности самой жидкости.

Датчики дифференциального давления применяются для измере ния разности (перепада) давлений между двумя точками.

Датчики избыточного давления используются для измерения разницы между абсолютным давлением и относительным (абсолютным) атмосферным давлением.

Преобразователи избыточного давления-разряжения представляют собой сочетание датчиков избыточного и вакуумметрического давлений, т.е. измеряют как давление, так и разрежение.

Преобразователи вакуумметрического давления (разряжения) предназначены для измерения давления меньше атмосферного, т.е. там, где существует разрежение относительно атмосферы.

2. Тип измеряемой среды

Датчики давления могут использоваться для работы с неагрессивными и агрессивными газами и жидкостями, пищевыми, вязкими и абразивными средами, маслами, нефтепродуктами и т.д. Специфика контролируемой среды предполагает особые конструктивные решения датчиков, например, при наличии частиц грязи потребуется использование модификации с разделительной мембраной, которая будет защищать чувствительные элементы прибора от поломки и разрушения.

3. Диапазон измерений

Диапазон измерений датчика давления — это максимальные и минимальные значения, при подаче которых устройство будет осуществлять измерения и преобразование в выходной сигнал. Поэтому необходимо выбирать датчик, диапазон измерений которого соответствует диапазону давления предполагаемых измерений. При этом нужно учитывать как нормальные условия применения, так и случайные колебания давления.

Выделяют датчики высокого и сверхвысокого давления, датчики низкого и сверхнизкого давления, и преобразователи среднего давления.

DMP 334 датчики высокого и сверхвысокого давления DPS+ датчики особо низких давлений

4. Точность измерений (погрешность)

Для ряда технологических процессов наиболее важным показателем является точность измерений. Поэтому точность — это основная характеристика любого датчика, определяющая погрешность его измерений. Погрешность измерений представляет собой величину максимального расхождения между показаниями реального и эталонного измерения, определяется как максимальное отклонение измеренной характеристики от действительной.

В основном точность датчиков давления составляет 0,5% от диапазона измеряемого давления. Для менее требовательных к точности процессов погрешность может составлять 1,25% диапазона. Также существуют высокоточные датчики давления, погрешность измерений которых не превышает 0,25% и 0,1%.

5. Температура процесса (измеряемой среды)

Каждый из датчиков давления имеет допустимые пороги рабочего температурного диапазона. И важно, чтобы температура процесса не выходила за пределы этих значений.

Например, в пищевой промышленности имеют место кратковременные процессы, занимающие от 20 до 40 минут (санитарная обработка), во время которых температура измеряемой среды может возрастать до 120-145°C. В этом случае необходимо использовать датчики, устойчивые к временному воздействию высоких температур, например датчики давления МИДА-ДИ-12П-12 и МИДА-ДИ-12П-072-К-150.

6. Выходной сигнал

По типу выходного сигнала датчики давления подразделяются на:

  • Модели с аналоговым выходным сигналом.
  • Исполнения с цифровым выходным сигналом.
  • Устройства с релейным выходным сигналом.

Унифицированный токовый сигнал 4…20 мА , где 4 мА соответствуют нижнему значению диапазона измерений, а 20 мА – верхнему является универсальным выходным сигналом для большинства датчиков давления. Помимо этого распространены датчики с токовым аналоговым выходным сигналом 0…20 мА, 0. 5 мА, 20. 0 мА и т.д. Также в промышленности встречаются датчики давления с выходным сигналом напряжения, например: 0. 1 В, 0. 10 В, 0. 5 В.

Датчики давления с цифровым выходным сигналом, помимо аналогового 4…20 мА, могут выпускаться с поддержкой протокола HART, RS-485 и RS-232.

Приборы с релейным выходным сигналом предназначены для замыкания-размыкания цепи при достижении определенного значения давления, тем самым посылая сигнал на вторичные приборы контроля и управления.

7. Присоединение к процессу

Присоединением датчика давления к процессу называется способ монтажа устройства для осуществления измерений — к трубопроводу, импульсной линии и т.д. По типу механического присоединения различают датчики:

  • С резьбовыми присоединениями.
  • С фланцевыми присоединениями.
  • Гигиеническими присоединениями.
  • Погружные.

Общепромышленные исполнения датчиков давления наиболее часто монтируются с использованием резьбовых соединений G1/2″ DIN 16288 и M20x1,5.

Читайте также:  Программатор датчиков давления tpms autel ts508 инструкция по применению

Заключение

Помимо 7 главных критериев при выборе датчиков давления необходимо учитывать и другие условия эксплуатации: перепады температуры, вибрации, ударов, помех по цепям питания, наличия взрывоопасных установок и т.д. На нашем сайте вы найдете широкий выбор преобразователей давления, датчиков и реле давления, манометров и метрологического оборудования. Только качественные датчики!

Источник

Датчик давления. Что нужно знать о выборе.

Недостаточно выбрать датчик давления только на основании того, что измеряемый диапазон давления находится внутри диапазона измерения датчика давления, а тип выходного сигнала соответствует заданному. Комплексные данные относительно предполагаемого места установки, диапазона измерения, рабочей среды, температуры, наличия внешних воздействий (вибраций, электромагнитных полей), типа соединения, температуры и влажности окружающей среды, выходного сигнала, точности измерения, других особенностей применения и специфики конкретного технологического процесса помогут осуществить корректный выбор преобразователя давления, обеспечить ожидаемый результат, надежную и долговечную работу.

Как правило, датчики применяют в контролируемых технологических процессах для измерения непосредственно относительного, абсолютного или дифференциального давления среды в установке или трубопроводе или для измерения гидростатического уровня жидкости в емкости. В последнем случае учитывают то, что высота столба жидкости над датчиком определяется не только величиной давления, но и плотностью измеряемой среды.

  1. Область применения датчиков давления несмотря на часто кажущуюся схожесть не одинакова, а специфические особенности контролируемого процесса могут предъявлять дополнительные требования к материалам и конструкции, например, санитарные требования (в пищевой или фармацевтической промышленности), требования по взрывозащищенности конструкции — искробезопасности цепей и взрывобезопасности оболочки (в химической или нефтегазовой промышленности).
  2. Рабочая среда может характеризоваться не только простой характеристикой — вода или воздух. Среда может быть вязкой, обладать низкой текучестью, загрязненностью, химической агрессивностью или другими весьма специфическими свойствами. Среда может требовать для безотказной и надежной работы наличия специальных защитных мембран, отделяющих чувствительный элемент от агрессивной, вязкой или загрязненной среды.
  3. Наличие значительных гидравлических ударов требует дополнительных компенсационных мер – датчик может быть конструктивно оснащен демпфером гидроудара (например, датчик MBS 3050), обладать достаточной перегрузочной способностью.
  4. Диапазон измерения – как правило, фиксированный диапазон давления, измеряемый и преобразуемый датчиком в унифицированный выходной сигнал по линейному закону. Диапазон определяется верхней и нижней границей измеряемого даления, например, 0-250 mbar, 0-1 bar, 0-10 bar, 0-16 бар, 0-25 бар и т.д. Пределы выходного сигнала, например, 4-20mA или 0-5В, фиксированно привязаны к пределам измерения датчика, например, к 0 — 16 бар или 0-100 бар.
  5. Температура измеряемой среды далеко не всегда отличается стабильностью и может изменяться в достаточно широких пределах. В любом случае она должна находится в допустимых пределах температурного диапазона датчика, а еще лучше – в пределах диапазона термокомпенсации датчика чтобы не создавать дополнительную «температурную ошибку» и не увеличивать общую погрешность измерения.
  6. Общепромышленно принятым типом соединения датчика давления с трубопроводом или технологической установкой считают резьбовое соединение — G ¼» A и G ½» A. Тем не менее, преобразователи давления могут иметь самые разнообразные варианты подключения (например, G 3/8″ A или 1/4 -18NPT), обеспечивающие удобство монтажа в существующие технологические системы и соответствующие специфическим промышленным или технологическим отраслевым требованиям.
  7. Окружающая среда. Температура, влажность, наличие агрессивных сред должны находится в пределах допустимых для значений, установленных производителем. Агрессивные среды предполагают исполнение датчика, устойчивое к химическим воздествиям. Повышенная влажность, перепады температуры и конденсатообразование часто становятся причиной коррозии электронных компонентов датчика относительного давления и выхода его из строя. Сенсоры датчиков относительного давления находятся в контакте с внешней атмосферой. Влажный воздух, попадая на измерительный элемент датчика образует конденсат при понижении температуры ниже точки росы. Там, где обычные датчики относительного давления подвержены коррозии, применяют датчики с сенсором, защищенным специальной мембраной или специально нанесенным защитным компаундом.
  8. На сегодня самый распространенный тип выходного сигнала – унифицированный токовый сигнал 4-20mA (сигнал 4mA соответствуют нижней границе диапазона измерения датчика, сигнал 20mA – верхней границе диапазона измерения датчика). Тем не менее, в промышленности существует потребность также в преобразователях с другими типами сигнала (0-5В, 1-5В, 1-6В, 0-10В или 0-20mA).
  9. Основная погрешность измерений и чувствительность («время отклика») датчика указаны в технической документации и должны удовлетворять требованиям процесса. Как правило, точность и скорость определения изменения давления датчика непосредственно влияют на его цену – чем точнее и чувствительнее, тем дороже. Многие процессы, например, контроль работы центробежных насосов повышения давления в ЖКХ, не требуют высокую точность и высокую чувствительность преобразователей давления – амплитуда давления не изменяется быстро и в очень короткий промежуток времени, колебания давления допустимы в пределах узкого диапазона. Для датчиков, используемых в процессах энергосбережения и контроля расхода воды в ЖКХ, требуется долговременная стабильность измерения, высокая защищенность от внешней среды, время наработки на отказ, обеспечивающие надежную работу датчика на протяжении 7-10 лет.

Источник

Датчики давления. Типы, характеристики, особенности, подбор.

Введение

Давление необходимо учитывать при проектировании многих химических процессов. Давление определяется как сила действующая на единицу площади и измеряется в английских единицах — пси или в СИ единицах — Па.
Существуют три типа измеряемого давления:

  1. Абсолютное давление — атмосферное давление плюс избыточное давление;
  2. Избыточное давление — абсолютное давление минус атмосферное давление;
  3. Дифференциальное давление — разность давлений между двумя точками.
Читайте также:  Как проверить датчик уровня омывающей жидкости солярис

Существуют различные типы датчиков давления, которые сегодня доступны на рынке для использования в промышленности. Каждый из них имеет преимущества в определенных ситуациях.

Критерии отбора датчика

Для того чтобы контролируемая давлением система работала правильно и эффективно, важно, чтобы используемый датчик давления мог давать точные показания по мере необходимости и в течение длительного периода времени без необходимости ремонта или замены в условиях работы системы. Существует несколько факторов, влияющих на пригодность конкретного датчика давления для конкретного процесса. Основные это:

  • характеристики используемых веществ в среде которых будет использоваться устройство;
  • условия окружающей среды;
  • диапазон давлений;
  • уровень точности и чувствительности, требуемые в процессе измерения.

Процесс

Чувствительный элемент (упругий элемент) будет подвергаться воздействию веществ, используемых в процессе, поэтому материалы датчика, которые могут реагировать с данными веществами или подвергаться воздействию агрессивных сред — непригодны для использования. Мембраны (диафрагмы) являются оптимальными даже для очень суровых условий использования.

Окружающая среда

Окружающая среда (в технологическом процессе — это среда создаваемая веществом, вибрация, температура и т.д.), в которой проводится технологический процесс, также должна быть учтена при выборе датчика давления. В агрессивных средах, при сильных вибрациях в трубопроводе, или при экстремальных температурах, датчики должны иметь дополнительный уровень защиты. Герметичные, прочные корпуса с заполнением материалом, содержащим глицерин или силикон — часто используются, для того, чтобы защитить внутренние компоненты датчика (кроме чувствительного элемента) от очень жестких, агрессивных сред и колебаний.

Диапазон давлений

Большинство процессов работают в определенном диапазоне давлений. Поскольку определенные датчики давления работают оптимально в определенных диапазонах давления, существует необходимость выбрать устройства, способные функционировать в диапазоне, установленном процессом.

Чувствительность

Различные процессы требуют различных уровней точности. В общем, чем точнее датчик, тем он дороже, таким образом, будет экономически выгодно выбрать датчики, которые способны максимально удовлетворить требуемую точность. Существует также компромисс между точностью и способностью быстро обнаруживать изменения давления. Следовательно, в процессах, в которых давление сильно варьируется в течение коротких периодов времени — нецелесообразно использовать датчики, которым требуется больше времени, чтобы дать точные показания давления, хотя они и могли бы дать более точные значения.

Методы измерения давления

Существует несколько наиболее часто используемых методов измерения давления. Эти методы включают в себя визуальный замер высоты жидкости в колонне, метод упругой деформации и электрические методы.

Высота жидкости в колонне

Давление можно выразить как высоту жидкости с известной плотностью в трубке. Используя уравнение P = ρ GH, можно легко вычислить значение давления. Данные типы измерительных приборов обычно называют манометрами. Для измерения высоты жидкости в колонне, может быть использована шкала с единицами измерения расстояния, также как и откалиброванная шкала давления. Обычно в качестве жидкости в этих колоннах используется вода или ртуть. Вода используется, когда вы хотите достичь более высокой чувствительности (плотность воды значительно меньше, чем плотность жидкой ртути, так что высота столба воды будет более сильно меняться при изменении давления). Ртуть же используется, когда вы хотите измерять более высокие значения давления, но с меньшей чувствительностью.

Упругая деформация

Этот метод измерения давления основан на принципе, который гласит, что степень деформации упругого материала прямо пропорциональна прикладываемому давлению. Для данного метода, в основном, используются три типа датчиков: трубки Бурдона, диафрагмы и сильфоны. (См. раздел «Типы датчиков»)

Электрические методы

Электрические методы, используемые для измерения давления основаны на принципе, основывающимся на том, что изменение размера влияет на электрическое сопротивление проводника. Устройства, использующие для измерения давления изменение сопротивления называют тензодатчиками. Также существуют и другие электрические датчики, например емкостные, индуктивные, магнетосопротивления (Холла), потенциометрические, пьезометрические и пьезорезистивные преобразователи. (См. раздел «Типы датчиков»)

Типы датчиков

Существует множество различных датчиков давления являющихся наиболее подходящими для конкретного процесса, но их обычно можно разделить на несколько категорий, а именно: упругие датчики, электрические преобразователи, датчики дифференциального давления и датчики давления вакуума. Ниже представлены категории, каждая из которых содержит уникальные внутренние компоненты более подходящие под использование в конкретной ситуации.

Упругие датчики

Большинство датчиков давления жидкости имеют упругую структуру, где жидкость заключена в небольшой отсек по меньшей мере с одной упругой стенкой. При использовании данного метода, показания давления определяются путем измерения отклонения этой эластичной стенки, представляя результат непосредственным отсчетом через соответствующие связи, либо через трансдуцированные электрические сигналы. Упругие датчики давления очень чувствительны, они довольно хрупкие и подвержены вибрации. Кроме того, они, как правило, значительно дороже, чем манометры, и поэтому в основном используются для передачи измеренных данных и измерения разности давлений. Теоретически можно использовать довольно широкий спектр упругих элементов для упругих датчиков давления. Однако большинство устройств используют ту или иную форму трубки Бурдона или диафрагмы.

Читайте также:  Ssangyong 6655420017 датчик давления масла причины поломки

Трубки Бурдона

Принцип, на котором основаны разного вида трубки Бурдона: Давление, подаваемое внутрь трубки, вызывает упругую деформацию эллиптического или овального сечения трубки в сторону круга, которая вызывает появление напряжений в продольном направлении, заставляющих трубку разгибаться, а свободный конец трубки перемещаться. Система рычагов и передач превращает это движение и возвращает стрелку, показывающую давление относительно круглой шкалы. Диапазон измерения такого манометра составляет — от 10 Па до 1000 МПа. Трубные материалы могут быть изменены соответствующим образом в соответствии с требуемым условием процесса. Также, трубки Бурдона — портативные и требуют минимального технического обслуживания, однако, они могут быть использованы только для статических измерений и имеют низкую точность.

Материалом для трубчатых пружин может служить сталь, бронза, латунь. В зависимости от конструктивного исполнения трубчатые пружины могут быть одно- и многовитковые (винтовые и спиральные), S-образные и т.п. Распространены одновитковые трубчатые пружины, используемые в манометрах, которые предназначены для измерения давления жидкостей и газов, а также в таких типах манометров как глубиномер. Датчики С-типа могут быть использованы в диапазонах давлений приближающихся к 700 МПа; они имеют минимальный рекомендованный диапазон давления — 30 кПа (т.е. они не достаточно чувствительны для измерения разности давлений меньше чем 30 кПа).

Сильфоны

Сильфоны имеют цилиндрическую форму и содержат много складок. Они могут деформироваться в осевом направлении при изменении давления (сжатие или расширение). Давление, которое должно быть измерено прикладывается к одной стороне сильфона (внутри или снаружи), тогда как на противоположную сторону действует атмосферное давление. Абсолютное давление может быть измерено путем откачки воздуха из внешнего или внутреннего пространства сильфона, а затем измерением давления на противоположной стороне. Сильфон может быть подключен только к включающим / выключающим переключателям или к потенциометру и используется при низких давлениях, H 2 (газ) + ZnCl 2 (жидк), вы производите один моль газообразного водорода в дополнение к существующему давлению воздуха в емкости. По мере протекания реакции, давление внутри сосуда будет существенно увеличиваться. Моделирование давления H 2 (газ) в идеальных условиях равно, Р = НЗТ / V

  • Примерно через 1 час, давление H 2 (газ) увеличится до 4,38 атм, создав общее давление в сосуде на 5,38 атм.
  • Окружающая среда
    1. Здесь нет опасности от высоких температур и сильной вибрации из-за высокого расхода и скорости реакции.
  • Чувствительность
    1. Так как это умеренно опасный процесс, мы должны иметь выход датчика подключаемый к компьютеру. Так, инженер может безопасно наблюдать за процессом. Мы предполагаем, что датчик будет сигнализировать клапан HCl, чтобы закрыть его после того, как рабочее давление станет равным 3 атм., однако устройства иногда дают ошибку. Мы также должны иметь высокую чувствительность, поэтому предпочтительными будут электрические компоненты (т.е. мы не хотим, чтобы процесс отклонялся от нормального режима, хотя это потенциально возможно, если бы датчик был не очень чувствителен к постепенным изменениям).
  • Точка отключения

    Принимая во внимание быстрое увеличение давления, как оценено в пункте (2), и отказ клапана при 4 атм., точка выключения должно быть примерно равна 3 атм.

    Тип датчика:

    1. Учитывая типы датчиков, которые мы обсуждали, мы можем сразу отбросить вакуумные датчики, так как они работают при очень низких давлениях (почти вакууме, отсюда и название). Мы можем также отбросить дифференциальные датчики давления, поскольку мы не ищем перепада давления на резервуаре.
    2. Поскольку мы хотим добиться высокой чувствительности, мы должны использовать электрические компоненты. Учитывая диапазон давлений (3 атм.; макс

    0,3 МПа) оптимальным будет емкостной элемент, потому что он прочный и хорошо работает в системе низкого давления.

  • Принимая во внимание коррозионную активность в системе с содержанием HCl , в качестве упругого элемента может быть использована мембрана. Мембраны также довольно прочны и обеспечивают быстрое время отклика.
  • Эта комбинация, вероятно, будет заключена в прочном, заполненном, глицерином / силиконом корпусе, чтобы защитить датчик от деградации.
  • Так, в итоге, мы выбираем датчик, который будет использовать диафрагму в качестве упругого элемента, емкостной элемент качестве электрического компонента и антикоррозийный корпус.

    Пример 2

    Ваш руководитель сказал вам добавить датчик давления в очень дорогой и важной части оборудования. Вы знаете, что часть оборудования работает на 1 МПа и при очень высокой температуре. Какой датчик вы бы выбрали?

    Поскольку часть оборудования, которое вы имеете дело очень дорогое, вам нужен датчик, который имеет высокую чувствительность. Электрический датчик был бы подходящим, потому что вы могли бы подключить его к компьютеру для быстрого и простого считывания показаний. Кроме того, вы должны выбрать датчик, который будет работать на 1 МПа и сможет выдерживать высокие температуры. Из информации представленной в этой статье вы знаете, что есть много датчиков, которые будут работать при давлении 1 МПа, так что вы должны решить, относительно других влияющих факторов. Одним из наиболее чувствительных электрических датчиков является датчик емкостного типа. Он имеет чувствительность 0.07 МПа. Емкостный датчик обычно имеет диафрагму в качестве упругого элемента. Мембраны имеют быстрое время отклика, очень точны и работают на 1 МПа.

    Источник

    Adblock
    detector