Меню

Planar antenna датчик движения

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

СВЧ детектор движения RCWL-0516

Среди имеющихся в продаже датчиков движения преобладают устройства использующие инфракрасное излучение. Но доступны и другие решения, например модуль RCWL-0516, называемый иногда «доплеровским радаром», который использует микроволновое излучение для обнаружения движения.

Поскольку микроволновое излучение хорошо проникает через тонкие препятствия из непроводящих материалов, это открывает много новых возможностей использования этого решения. В отличие от типичных инфракрасных детекторов, модуль будет работать правильно, даже спрятанный за перегородкой из картона или тонкого дерева.

Схема модуля RCWL-0516

Основные параметры датчика

  • обнаружение движения объекта, такого как человек или животное,
  • дальность около 7 метров, если нет дополнительных препятствий, а сам объект достаточно большой,
  • частота генерируемого излучения: около 3,1 ГГц,
  • напряжение питания: 4…28 В,
  • потребление тока: 2,5 мА при питании 5 В,
  • размеры модуля: 36 х 17 мм.

На рисунке выше представлена принципиальная схема датчика. Видно, что модуль состоит из двух функциональных блоков. Генератор СВЧ построен на транзисторе Q1, работающем в модифицированной схеме трёхточки. Антенна, входящая в цепь эмиттера, выполнена на печатной плате в виде S-образной дорожки. Антенна создает резонансный контур с емкостями, выполненными также в виде дорожек на плате.

Кольцевая дорожка на противоположной стороне платы отмечена на схеме Cp2, а Cp1 – это емкость кругового поля.

Генератор работает на основной частоте около 3,1 ГГц. Генерируемые волны излучаются антенной. Отразившись от препятствия, они возвращаются к датчику и антенне. Если объект находится в движении, в приемопередающей цепи появляются колебания, модулирующие амплитуду генерируемого сигнала.

Сигнал поступает на вход 1P микросхемы U1 через фильтр нижних частот. Эта схема образует второй функциональный блок датчика. Он состоит из усилителей, детекторов и логики, преобразующей модуляции несущей волны, возникающие в результате отражения, в логические импульсы, сигнализирующие об обнаружении объекта.

Подключение модуля датчика движения

Разъем P1 имеет 5 контактов со следующими функциями:

  1. 3.3 V OUT – выход стабилизированного напряжения, вырабатываемого в U1. Нагрузочная способность до нескольких десятков мА;
  2. GND – земля модуля;
  3. VOUT – вывод логического сигнала с уровнями 0, 3,3 В. Высокий уровень указывает на обнаружение движущегося объекта;
  4. 4 … 28 VIN – вход напряжения питания;
  5. ENABLE – вход для включения работы модуля. Когда он не подключен или имеет высокий уровень, система включена. При низком уровне сигнализация обнаружения объекта остается неактивной.

На плате есть место для пайки дополнительных элементов, изменяющих режим работы датчика.

  • Место для конденсатора C-TM обозначено на схеме как C1 – стандартное время повторения сигнала обнаружения движения составляет примерно 2 секунды. Паяя в это место емкость – увеличится время.
  • Место для резистора R-GN обозначено на схеме как R3 – ограничение дальности обнаружения движущихся объектов. Максимальная дальность действия датчика составляет примерно 7 м. Припаивание резистора 1 МОм сократит её до 5 м.
  • Место для фоторезистора CDS обозначено на схеме как R18 – при попадании света на фоторезистор сигнализация обнаружения объекта будет заблокирована. Пайка элемента имеет смысл, если мы хотим, чтобы устройство работало только после наступления темноты. Дополнительный резистор R-CDS R16 позволяет выбрать порог срабатывания датчика в зависимости от уровня освещенности.

Модуль микроволнового датчика движения можно использовать для управления различными исполнительными механизмами. На схеме выше показано, как подключить индикаторный светодиод и реле к выходу VOUT. В момент обнаружения движения, контролируемого высоким состоянием, светодиод и реле будут работать. Если подаем в схему напряжение выше чем 5 В, следует выбрать реле с соответствующими параметрами.

Читайте также:  Где находится датчик открытия капота киа рио 4

Поскольку характеристика чувствительности модуля почти всенаправленная, не имеет значения какая сторона платы обращена к контролируемой области.

Источник

Как подключить датчик RCWL-0516 к Arduino

Для проекта нам понадобятся:

1 Описание, принцип действия и схема радара RCWL-0516

Датчик представляет собой модуль размером 35.9×17.3 мм и практически плоский, за исключением микросхемы BISS0001 (аналог RCWL-9196) на лицевой стороне и линейного стабилизатора напряжения 7133-1 на обратной. Благодаря линейному стабилизатору модуль можно питать напряжениями от 4 до 27 В, которое подаётся на вывод VIN. Внешний вид модуля приведён на фото.

Верхняя сторона датчика RCWL-0516

Обратите внимание, что вывод 3V3 – это не вход питания, а выход линейника! На него подавать ничего не нужно. Можно с него брать напряжение 3.3 В (потребители до 30 мА).

Нижняя сторона датчика RCWL-0516

Датчик RCWL-0516 работает на эффекте Доплера. Напомню, эффект Доплера – это изменение частоты отражённой волны при движении наблюдаемого объекта. Модуль постоянно излучает в пространство радиоволновое излучение определённой частоты (около 3150 МГц). Отражаясь от объекта, волна возвращается и фиксируется датчиком. Если её частота несколько изменилась, значит, объект находится в движении.

В случае обнаружения движения датчик выставляет на выходе OUT логическую единицу (3.3 В). Причём датчик может работать в двух режимах: перезапускаемом (retriggerable) и неперезапускаемом (non-retriggerable).

  • перезапускаемый режим – датчик будет держать на выходе OUT логическую единицу так долго, сколько будет фиксировать движение;
  • неперезапускаемый режим – датчик будет держать на выходе OUT логическую единицу установленное время (от 2 до 300 секунд).

Режим задаётся так. Если на входе «1» микросхемы BISS0001 логическая единица – режим перезапускаемый, если логический ноль – неперезапускаемый. В данном модуле на входе «1» микросхемы 3.3 В, т.е. он работает в перезапускаемом режиме.

Для регулировки времени срабатывания триггера (времени удержания импульса на выходе OUT) служит место для конденсатора C-TM. Без установленного конденсатора время срабатывания триггера – 2 сек. Добавление ёмкости повысит длительность импульса триггера.

После срабатывания триггера датчик на некоторое время «слепнет». Такой же эффект происходит сразу после включения. Поэтому после включения датчику нужно дать время (обычно до 10 секунд) чтобы «успокоиться» и настроиться на окружающую обстановку.

Для регулировки дальности обнаружения датчика служит место для резистора R-GN. По умолчанию датчик настроен на максимальною дистанцию обнаружения 7…9 м. Добавление резистора сопротивлением 1 МОм снизит дистанцию примерно в 1.5…2 раза.

Вывод CDS соединён с выводом 9 микросхемы BISS0001, который позволяет отключить датчик (активация/деактивация). К этому выводу в параллель (на место CDS в углу платы на лицевой стороне модуля) можно подключить фоторезистор, который будет включать датчик только в тёмное время суток. А пока освещения достаточно, его сопротивление маленькое, и радиоизлучатель будет выключен. С помощью резистора на месте R-CDS можно регулировать порог срабатывания фоторезистора. Если же просто «посадить» выход CDS на землю, то датчик будет неактивен.

В приложении к статье можно скачать принципиальную схему и описание детектора RCWL-0516. Они сделаны для более ранней модификации данного модуля, но практически идентичны, за исключением нескольких деталей. Так, например, на схемах отсутствует линейный стабилизатор напряжения на входе питания. Но в измерительной части всё соответствует рассматриваемому устройству.

В документации приведена рекомендация по размещению датчика RCWL-0516. Датчик крепится на потолке помещения на высоте не более 7 метров.

Пример размещения датчика RCWL-0516 внутри помещения

Буквой L обозначен радиус действия радара. Естественно, это всё довольно условно, т.к. диаграмма направленности планарной антенны (а это именно тот тип антенны, который применяется у нас в датчике) несколько сложнее, чем полусфера, и она излучает в разных направлениях с разной мощностью. Но главная идея в том, чтобы обзор датчика был как можно шире, а перпендикуляр, проведённый из центра датчика, был направлен в центр области, которую необходимо контролировать.

Читайте также:  Загорается датчик износа колодок

2 Подключение и работа радара RCWL-0516

Сначала проверим работоспособность датчика RCWL-0516 без Arduino. Для индикации подключим к выходу OUT датчика светодиод. Когда датчик будет детектировать движение, на выходе OUT будет появляться напряжение 3.3 В, и светодиод будет загораться.

Схема подключения датчика RCWL-0516

А вот так это выглядит вживую:

Вывод срабатывания датчика RCWL-0516 на светодиод

Очевидно, что для чтения показаний датчика RCWL-0516 с помощью Arduino, достаточно прочитать логический уровень на любом входе. Например, будем использовать аналоговый вход A0. Но просто прочитать значение – слишком простая задача. Давайте будем передавать информацию о срабатывании датчика по радиоканалу на удалённое устройство. В роли удалённого устройства также будет Arduino. Радиоканал устроим с помощью уже известной нам пары XY-MK-5V и FS1000A (вот здесь и здесь).

Передатчик будет выглядеть так:

Передатчик показаний датчика RCWL-0516 на Arduino и FS1000A

Здесь данные с выхода OUT датчика RCWL-0516 поступают на аналоговый вход A0 Arduino. А выход TX (D0) последовательного порта Arduino идёт на ножку DATA передатчика. Питается и датчик движения, и передатчик напряжением с выхода 5V Arduino.

Для устойчивости радиоканала важно, чтобы по нему постоянно передавались данные. Причём это не должны быть одни нули.

Допустим, когда датчик RCWL-0516 в состоянии ожидания, мы будем передавать по радио число 0xF0 , а когда датчик фиксирует движение, будем передавать 0x0F . Когда датчик зафиксирует движение, также будем зажигать встроенный светодиод Arduino. Таким образом, скетч передатчика будет такой:

Скетч передатчика показаний датчика RCWL-0516 (разворачивается)

Давайте сначала подключим приёмник к компьютеру с помощью преобразователя UART-USB и посмотрим, что вообще мы принимаем из радиоэфира (см. статью для подробностей).

Данные, принимаемые из радиоэфира

Видно, что в целом мы видим то, что и хотим увидеть: числа 0x0f и 0xf0. Но встречаются и искажения информации, вызванные шумами радиоэфира, от которых придётся избавляться. Самый простой способ – брать несколько соседних значений. И если они все равны ожидаемому, то считаем это за срабатывание. Поэтому скетч для приёмника будет несколько сложнее.

Источник

Подключение доплеровского датчика движения RCWL-0516 к Arduino

Обнаружение движения является одной из важнейших функций в системах охранной сигнализации, выключателях света и многих других домашних и промышленных применениях. Для обнаружения движения можно использовать несколько подходов, например, PIR датчик, который обнаруживает изменение инфракрасной энергии, выделяемой телом человека, и на основании этого способен обнаруживать наличие человека в контролируемой зоне.

В этой статье мы рассмотрим подключение доплеровского датчика движения (Doppler Radar Sensor) RCWL-0516 к плате Arduino Nano. RCWL-0516 представляет собой датчик обнаружения движения, который обнаруживает движение объектов, которые полностью или частично отражают радиоволны (даже если они находятся за стенами или другими материалами). Он способен обнаруживать не только людей, но и другие движущиеся объекты. Еще RCWL-0516 называют микроволновым датчиком движения или датчиком движения на эффекте Доплера.

Необходимые компоненты

  1. Плата Arduino Nano (купить на AliExpress).
  2. RCWL-0516 Doppler Radar Sensor (доплеровский датчик движения) (купить на AliExpress).
  3. Резистор 220 Ом (купить на AliExpress).
  4. Светодиод (купить на AliExpress).

Доплеровский датчик движения (Doppler Radar Sensor) RCWL-0516

Доплеровский датчик движения RCWL-0516 — способен определять движение объектов (препятствий), которые полностью или частично отражают радиоволны (люди, животные, металлы и т.д.), даже если они находятся за деревом (дверью), стеной (гипс, бетон), пластиками, стеклами и т.д. В основе работы датчика лежит эффект Доплера — изменение частоты отражённой волны вследствие движения излучателя, приёмника или отражателя. В данном модуле частота излучаемой им радиоволны меняется вследствие движения отражателя (препятствия). Модуль построен на базе чипа RCWL-9196 который оснащён передатчиком и приёмником. Датчик сработает если приёмник примет сигнал, частота которого незначительно отличается от частоты сигнала передатчик. Датчик обнаруживает движение во всем диапазоне от 0 до 360 градусов — слепых зон нет.

Читайте также:  Принцип работы гидравлического датчика

Распиновка датчика показана на следующем рисунке.

Назначение контактов датчика RCWL-0516:

  • OUT — выход датчика (устанавливается в «1» при наличии движений + задерживается на 2 секунды после их прекращения).
  • VIN — вход напряжения питания, от +4 до +28 В постоянного тока.
  • GND — вход питания (общий).
  • 3V3 — выход стабилизированного напряжения питания 3,3 В (можно использовать для питания микроконтроллеров).
  • COS — вход разрешения (подтянут внутренним сопротивлением чипа). Если на данном выводе установить уровень логического «0», то после сброса триггера, он не будет устанавливаться (датчик перестанет реагировать на движения).

Выход «OUT» можно подключать к любому контакту платы Arduino. Вход «COS» можно оставить не подключённым, т.к. он подтянут внутренним сопротивлением чипа, следовательно, разрешает работу триггера. Напряжение питания датчика составляет от 4 до 28 В постоянного тока, подаётся на выводы «VIN» и «GND» модуля.

Предупреждение : не подключайте питание к выходу «3V3» датчика! Контакт датчика «3V3» является выходом стабилизированного напряжения 3,3 В. От этого напряжения можно запитывать другие маломощные устройства, например, микроконтроллер.

Когда датчик срабатывает, на его выходе «OUT» устанавливается уровень логической «1». Датчик снабжен триггером, который удерживает уровень логической «1» на выходе «OUT» в течении 2 сек ±30% после прекращения движения.

Если датчик многократно срабатывает, например, постоянно фиксирует движения в течении 10 секунд, то уровень логической «1» на выходе «OUT» будет установлен на 12 секунд с момента первого срабатывания (10 секунд во время фиксации движений + 2 секунды после их прекращения, пока не «сбросится» триггер).

Технические характеристики датчика RCWL-0516:

1. Входное напряжение питания (VIN): 4… 28 В постоянного тока.
2. Потребляемый ток: до 3 мА (номинально 2,8 мА).
3. Дальность обнаружения: до 9 м (номинально до 5 м).
4. Мощность передатчика: до 30 мВт (номинально до 20 мВт).
5. Частота передатчика: 3,181 ГГц.
6. Время задержки до сброса триггера: 2 сек ±30%.
7. Выходное напряжение питания (3V3): 3,2… 3,4 В (номинально 3,3 В).
8. Максимальный ток на выходе «3V3»: до 100 мА.
9. Рабочая температура: -20… +80 °С.
10. Температура хранения: -40… +100 °С.
11.Габариты: 17,3х35,9 мм
12. Вес: 4 гр.

Схема проекта

Схема подключения доплеровского датчика движения RCWL-0516 к плате Arduino представлена на следующем рисунке.

Как видите, схема подключения датчика RCWL-0516 к плате Arduino достаточно проста: его контакты VIN и GND соединяются с контактами 5V и GND платы Arduino Nano, а его выход (контакт OUT) соединяется с контактом D12 платы Arduino Nano. Светодиод подключен к контакту D3 платы Arduino Nano.

Внешний вид собранной на макетной плате конструкции проекта показан на следующем рисунке.

Объяснение программы для Arduino

Полный код программы приведен в конце статьи, здесь же мы кратко рассмотрим его основные фрагменты.

В коде программы сначала объявим используемые контакты.

Источник

Adblock
detector