Меню

Процесс нагнетания в поршневом компрессоре

Рабочий процесс одноступенчатого поршневого компрессора

Поршневой компрессор засасывает пары хладагента со стороны низкого давления и сжимает их до давления конденсации, при котором они могут отдать окружающей среде тепло, воспринятое в испарителе и компрессоре.

Рабочее пространство компрессора со сторонами всасывания и нагнетания сообщается через всасывающие и нагнетательные клапаны. Они открываются и закрываются вследствие перепада давления между рабочей полостью компрессора и пространством за клапаном.

Для открытия всасывающего клапана давление в цилиндре должно быть меньше давления на стороне испарения, откуда в цилиндр поступают новые порции паров хладагента.

Нагнетательный клапан сообщает полость цилиндра со стороной нагнетания лишь тогда, когда давление в цилиндре превысит давление в конденсаторе.

Для отвода тепла от цилиндров, которые сильно разогреваются при сжатии паров, поршневые компрессоры снабжают рубашками охлаждения или ребрами (при охлаждении воздухом). Через рубашки охлаждения пропускают холодную воду, а ребра охлаждения отдают тепло окружающему воздуху.

При нагревании сам поршень и несущая его деталь — шатун или шток удлиняются, поэтому в устройстве поршневого компрессора предусмотрено, что при нахождении поршня в крайнем положении, называемом «мертвой точкой», между его кромкой и крышкой остается зазор, называемый «мертвым» или «вредным» пространством. Чем больше «вредное» пространство, тем меньше новых паров хладагента всасывается в цилиндр компрессора. Размер вредного пространства вертикальных компрессоров — до 1 мм, горизонтальных 1,2—2,5 мм.

При работе компрессоров различают сухой и мокрый ход.

Сухим ходом компрессора называется такая его работа, при которой пары, засасываемые компрессором, не содержат капелек жидкого хладагента. Сухой ход — важное условие безаварийной работы машины.

При влажном ходе пары несут с собой большое количество капель и тумана жидкости, которые, доиспаряясь во всасывающем трубопроводе и цилиндре, уменьшают холодопроизводительность компрессора. При этом всасывающий коллектор и стенки цилиндра покрываются снеговой шубой. Влажный ход может привести к гидравлическому удару при попадании между крышкой цилиндра и поршнем такого количества жидкого хладагента, которое превышает объем мертвого пространства.


Рис. 12. Диаграмма р—v рабочего процесса одноступенчатого поршневого компрессора:

Процессы, происходящие в поршневом компрессоре, можно показать в диаграмме (рис. 12), устанавливающей зависимость давления Р от хода поршня или объема Vh, описываемого поршнем во время его движения.

Линия 4—1 представляет собой линию всасывания. Она лежит несколько ниже изобары Р0 вследствие сопротивления клапанов.

Адиабата 1—2 характеризует сжатие в цилиндре, которое сопровождается повышением давления и температуры паров.

Линия 2—3 представляет процесс выталкивания паров через нагнетательные клапаны в конденсатор. Из-за сопротивления в нагнетательных клапанах и трубопроводах давление нагнетания несколько выше давления конденсации.

Линия 3—4 характеризует расширение сжатых паров, оставшихся в конце сжатия во вредном пространстве цилиндра; этот процесс продолжается до тех пор, пока давление в цилиндре не достигает величины, при которой открывается всасывающий клапан.

Действительный процесс сжатия паров хладагента отличается от теоретического. Объясняется это тем, что происходит оно не по адиабате, а по другой кривой (политропе) и тем, что всасываются не сухие насыщенные, а перегретые пары. Для установления степени отклонения в работе действительного компрессора от теоретического служит коэффициент подачи.

Коэффициент подачи характеризует потери в действительном компрессоре в зависимости от коэффициента объемного расширения, а также от коэффициентов дросселирования, подогрева и плотности.

Коэффициент объемного расширения учитывает влияние на холодопроизводительность той части паров хладагента, которая не прошла в конденсатор, а осталась во «вредном» пространстве компрессора.

Коэффициент дросселирования учитывает сопротивление всасывающих клапанов. Он равен 0,93÷0,97.

Коэффициент подогрева вводится для учета теплообмена со стенками цилиндра и клапанами. Он колеблется в пределах от 0,9 до 0,95.

Коэффициент плотности учитывает утечки паров хладагента с нагнетательной стороны через поршни и клапаны. Он принимается равным 0,95÷0,98.

Отношение действительной холодопроизводительности к теоретической называется индикаторным коэффициентом.

Механический коэффициент учитывает потери на трение в движущихся частях компрессора и представляет собой отношение индикаторной мощности к эффективной (затрачиваемой на валу компрессора).

Читайте также:  1e15917a1 деталь в компрессоре

Индикаторной называется мощность, затрачиваемая непосредственно в цилиндре компрессора.

Объемная холодопроизводительность для соответствующих условий определяется по таблицам или диаграммам.

Значение коэффициента подачи обычно приводится в паспорте компрессора.

Важной характеристикой при сравнении различных компрессоров по затрачиваемой для производства холода мощности является удельная холодопроизводительность, определяемая отношением холодопроизводительности компрессора к эффективной мощности. Удельная холодопроизводительность с повышением температуры кипения повышается.

Источник

Теоретические основы работы поршневых компрессоров

Принцип работы поршневого компрессора.

Индикаторные диаграммы рабочих циклов поршневого компрессора.

Подача поршневого компрессора, факторы, влияющие на неё.

Многоступенчатое сжатие газа.

Поршневой компрессор — машина, предназначенная для преобразования энергии газа (пара, жидкости) с помощью поршня и обеспечивающая высокие давления нагнетания (до 40 МПа и выше).

Преимущества таких компрессоров — высо­кие значения к. п. д. и степени повышения давления цилиндров в одной ступени, максимальное давление сжатия газа, возмож­ность эксплуатации в широком диапазоне изменения давлений компримируемого газа, возможность построения на базе одной модели различных компрессорных схем и сохранения мощности при изменении условий эксплуатации. Важное достоинство поршневых компрессоров — незначи­тельная чувствительность к изменению плотности компримиру­емого газа. В то же время динамическая неуравновешенность от возвратно-поступательного компрессора оказывается причи­ной повышенной металлоемкости.

Для компримирования нефтяного и природного газов, а также воздуха, в районах с развитой системой электроснаб­жения применяют угловые и оппозитные поршневые компрес­соры с приводом от электродвигателя.

Принципиальная схема поршневого компрессора (рис. 2.1) включает цилиндр 1, поршень 2, всасывающий 3 и нагнетательный 4 клапаны, шток 5 и кривошипно – шатунный механизм, состоящий из крейцкопфа 6, шатуна 7 и кривошипа 8.

Рисунок 2.1 — Схема работы поршневого компрессора

Рабочий процесс в поршневом компрессоре осуществляется за четыре этапа:

1. расширение газа во вредном пространстве цилиндра компрессора (в клапанах и околоклапанном пространстве, в зазоре между крышкой цилиндра и плоскостью АА, соответствующей крайнему положению поршня);

2. всасывание (расширение и всасывание происходят при движении поршня от плоскости АА до плоскости ВВ на длине хода поршня s; при этом всасывающий клапан открывается не сразу, а лишь после того, как газ, находящийся во вредном пространстве цилиндра, расширится, и его давление станет меньше давления во всасывающей линии, в этот момент откроется клапан 3, и газ начнет поступать в цилиндр компрессора);

3. сжатие (происходит при движении поршня от плоскости ВВ до плоскости СС);

4. нагнетание (происходит при движении поршня от плоскости СС до плоскости АА; нагнетание газа в трубопровод начинается тогда, когда давление газа в цилиндре превысит давление в нагнетательной линии, в этот момент откроется клапан 4, и газ начнет поступать в трубопровод).

Характер изменения объема газа зависит от условий теплообмена между газом, деталями компрессора и окружающей средой. В зависимости от этого сжатие или расширение могут происходить:

— без теплообмена (адиабатический процесс); т. е. с нагревом газа при его сжатии;

— с частичным теплообменом (политропический процесс);

— с полным теплообменом (изотермический процесс) т. е. с сохранением одной и той же, постоянной при сжатии и расширении, температуры газа.

Как видно из определений, адиабатический и изотермический процессы являются частными случаями политропического процесса.

Политропический процесс изменения состояния идеального газа удовлетворяет уравнению:

где p – давление; V – объем газа; m – показатель политропы.

При адиабатических процессах m обозначается через k и называется показателем адиабаты. Показатель адиабаты определяется как отношение удельных (или молярных) теплоемкостей газа при постоянном давлении и объеме. Для одноатомных газов k = 1,67, для двухатомных k = 1,40 – 1,41, для многоатомных k = 1,2 – 1,3. При политропических процессах показатель политропы m может принимать значение от единицы до k и быть больше k. При изотермическом процессе m = 1.

При рассмотрении идеального цикла поршневого компрессора принимают следующие допущения:

1. Отсутствуют сопротивления движению потока газа (в том чис­ле и в клапанах).

2. Давление и температура газа во всасывающей и нагнетатель­ной линиях постоянны.

Читайте также:  Компрессор автоматический automall atj 1166s

3. Давление и температура газа в период всасывания, так же как и в период выталкивания газа из цилиндра, не меняются.

4. Мертвое (вредное) пространство в цилиндре компрессора от­сутствует.

5. Нет потерь мощности на трение и нет утечек газа.

Индикаторная диаграмма идеального цикла представлена на рис. 2.2. Процесс сжатия газа поршнем характеризуют кривые 1-2. При изотермическом про­цессе это будет кривая 1-2′», при адиабатическом 1-2″, а при по­литропическом 1-2 или 1-2″. Рассматривая политропический процесс 1-2, видим, что за этот период цикла, объем газа умень­шится с V1 до V2 давление изме­нится от р1 до р2, а температура -от Т1 до Т2. Далее идет нагнета­ние газа в трубопровод 2-3. Дав­ление и температура газа остают­ся в этот период неизменными (p2 и T2). Весь объем газа V2 переходит в нагнетательный трубопровод. За период 3-4 в цилиндре снижается давление до давления во всасывающем трубопроводе (p1) закрывается нагнетательный клапан и с началом движения поршня вправо открывается всасывающий клапан. Период всасывания харак­теризуется линией 4-1. Здесь давление и температура газа равны р1 и T1, в цилиндр поступает объем газа, равный V1.

Рисунок 2.2 – Индикаторная диаграмма идеального цикла поршневого компрессора

Рисунок 2.3 – Индикаторная диаграмма реального цикла поршневого компрессора

Рассмотрим реальный цикл работы поршневого компрессора. Процесс сжатия газа в цилиндре соответствует линии 1-2 на инди­каторной диаграмме (рис. 2.3). В начальный момент сжатия относи­тельно холодный газ получает тепло от нагретого цилиндра, вследствие чего процесс идет с подводом тепла к газу, и политропа отклоняется вправо от политропы идеально­го процесса (пунктирная ли­ния). В конце процесса сжатия газа температура его повышает­ся и становится больше темпе­ратуры цилиндра и клапанов, и процесс сжатия идет с отводом тепла от газа. Политропа на этом участке отклоняется влево от политропы идеального про­цесса. Эти явления приводят к тому, что показатель реальной политропы процесса сжатия газа становится переменным, и расчет процесса надо вести по условному эквивалентному показателю политропы.

Понижение давления в цилиндре против давления во всасываю­щей линии (см. рис. 2.3, точка 1), в начале сжатия обусловлено со­противлением потоку газа во всасывающем клапане. Повышение давления против давления в нагнетательном трубопроводе (точка 2) в конце сжатия обусловлено усилиями, затрачиваемыми на открытие нагнетательного клапана (сопротивление пружин клапана и инерция масс деталей клапана, приводимых в движение при его открытии). Процесс нагнетания соответствует линии 2-3. Повышенное, про­тив идеального процесса, давление нагнетания обусловливается со­противлениями потоку газа в нагнетательном клапане и подводящих каналах. Некоторая волнистость линии нагнетания обусловливается непостоянством сопротивлений потоку газа из-за изменений скорос­тей поршня и газа, пульсацией давления в газопроводе и вибрацией клапанных пластин.

За процессом нагнетания в реальном цилиндре идет процесс рас­ширения газа, оставшегося в мертвом (вредном) пространстве под давлением р2» (линия 3-4). Объем вредного пространства Vм. Газ рас­ширяется, снижая давление от р2» до р4 и увеличивая свой объем до V4. При этом поршень движется вправо. Процесс расширения закан­чивается при открытии всасывающего клапана. Давление в цилинд­ре при этом будет ниже, чем во всасывающем трубопроводе, за счет усилий, затрачиваемых на открытие всасывающего клапана. Процесс расширения газа идет вначале с отбором тепла от сжато­го газа, а затем с подводом тепла к газу, и потому показатель политро­пы будет не постоянен (так же как и при сжатии газа).

За процессом расширения идет всасывание газа (линия 4-1). Давление в цилиндре при этом будет ниже давления в подводя­щем трубопроводе за счет сопротивления движению потока газа в клапане и каналах. Колебание давления всасывания в цилиндре обусловлено теми же явлениями, которые наблюдаются и при нагнетании газа.

Работа, затрачиваемая на сжатие газа, в реальном цикле опреде­ляется площадью индикаторной диаграммы 1-2-3-4 (см. рис. 2.3).

Подачей компрессораназывают объем или массу газа, проходя­щего за единицу времени по линии всасывания или линии нагнета­ния компрессора. Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.

Читайте также:  Компрессор для газ 4301

Объемный расход газа обычно приводится к условиям всасыва­ния (к давлению и температуре во всасывающей линии), нормаль­ным условиям (давление 100 кПа и температура 293°К) или стандартным условиям (100 кПа и 293°К).

Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным усло­виям. Иногда эту подачу называют коммерческой.

Подача компрессора с одним цилиндром одинарного действия (см. рис. 3.3)

(2.1)

где ar w:top=»1134″ w:right=»850″ w:bottom=»1134″ w:left=»1701″ w:header=»720″ w:footer=»720″ w:gutter=»0″/> «> — коэффициент подачи, зависящий от многих факторов;

— объем описываемый поршнем за ход в одну сторону;

п — число двойных ходов поршня в минуту (с возвращением в исходное положение).

(2.2)

— объемный;

— герметичности;

— температурный;

— давления.

Объемный коэффициент отражает степень полноты использова­ния объема цилиндра. Коэффициент герметичности это функция подачи компрессо­ра от запаздывания закрытия клапанов, негерметичности уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилинд­ров двойного действия, негерметичности соединений рабочих кана­лов. Коэффициент герметичности обычно принимается в пределах 0,95. 0,98. Температурный коэффициент отражает влияние нагрева газа при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в ци­линдр из всасывающего патрубка. Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и темпе­ратура стенок каналов и цилиндра. Коэффициент давления учитывает снижение подачи компрес­сора за счет уменьшения давления газа в цилиндре при всасывании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется, и в цилиндр входит мень­шее его количество. На подачу влияет уменьшение давления не в на­чале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95…0,98.

При необходимости сжимать газ до давления, превышающего 0,4…0,7 МПа по манометру, применяют многоступенчатое сжатие, сущность которого состоит в том, что процесс сжатия газа разбивается на несколько этапов или ступеней. В каждой из этих ступеней газ сжи­мается до некоторого промежуточного давления и перед тем как по­ступать в следующую ступень, охлаждается в межступенчатом холо­дильнике. В последней ступени газ дожимается до конечного давле­ния. В современных компрессорах высокого давления число ступе­ней сжатия достигает семи.

Причины, заставляющие применять многоступенчатое сжатие, следующие;

— выигрыш в затраченной работе;

— ограничение температуры конца сжатия;

— более высокий коэффициент подачи.

Для уменьшения работы сжатия применяется ступенчатое сжа­тие газа с охлаждением его в охладителях, расположенных между сту­пенями компрессора.

В результате охлаждения газа устраняется и другая причина, обус­ловливающая применение ступенчатого сжатия, это недопустимое повышение температуры газа при большой степени повышения дав­ления одноступенчатым компрессором. Температура на этапе сжатия газа не должна достигать значений, при которых происходит измене­ние свойств компрессорного масла. С повышением температуры газа вязкость масла уменьшается, ухудшаются условия смазки, и увели­чивается износ трущихся деталей компрессора. При достижении тем­ператур порядка 180. 200°С масло разлагается, в результате чего по­верхности деталей цилиндра компрессора и нагнетательная линия покрываются нагаром. Это ухудшает охлаждение компрессора и на­рушает его нормальную работу (увеличивается трение между порш­невыми кольцами и цилиндром, возможны поломки колец и задиры поверхности цилиндра, ухудшается работа клапанов, возникает опас­ность самовозгорания и взрыва в нагнетательной линии).

1. Принцип действия поршневого компрессора.

2. Условия сжатия газа в поршневых компрессорах. Политропный процесс.

3. Идеальная индикаторная диаграмма цикла поршневого комп­рессора.

4. Работа на сжатие единицы массы газа в компрессоре.

5. От чего зависит температура в конце процесса сжатия в одной ступени?

6. Производительность поршневых компрессоров.

7. Объемный коэффициент подачи поршневого компрессора.

8. Принцип получения высоких давлений в поршневых компрес­сорах.

Источник

Adblock
detector