Меню

Проверка датчика ионизации мультиметром

Назначение и принцип работы ионизационного электрода

Ионизационный электрод контроля наличия и состояния пламени. Автоматическое отключение подачи газа при погасшем пламени горелки. Отслеживание состояния воздушно-газовой смеси и восстановление процесса горения. Совмещение в одном устройстве запальной и контрольной функций.

Ионизационные электроды используют в датчиках контроля пламени газовых горелок. Их главная задача — сигнализировать блоку управления о прекращении горения и необходимости перекрыть поступление газа.

Эти устройства применяют для контроля непрерывности пламени в промышленных печах, домашних котлах отопления, газовых колонках и кухонных плитах. Нередко их дублируют фотодатчиками и термопарами, но в самых простых тепловых аппаратах ионизационный электрод является единственным средством контроля за зажиганием газа и непрерывностью его горения.

Назначение, принцип работы и конструкция ионизационного электрода

Если в нагревательном устройстве по каким-то причинам пропадает пламя, то сразу же должна быть прекращена подача газа. В противном случае он достаточно быстро заполнит объем установки и помещение, что может привести к объемному взрыву от случайной искры.

Поэтому все нагревательные установки, работающие на природном газе, в обязательном порядке должны оснащаться системой слежения за наличием пламенем и блокировки подачи газа.

Ионизационные электроды контроля пламени обычно выполняют две функции: во время зажигания газа от запальника разрешают его подачу при наличии устойчивой искры, а при исчезновении пламени подают сигнал на отключение газа основной горелки.

Принцип работы

Принцип работы ионизационного электрода основан на физических свойствах пламени, которое по своей сути является низкотемпературной плазмой, т. е. средой, насыщенной свободными электронами и ионами и поэтому обладающей электропроводностью и чувствительностью к электромагнитным полям.

Обычно на него подается положительный потенциал от источника постоянного тока, а корпус горелки и запальник присоединяются к отрицательному.

На рисунке ниже показан процесс возникновения тока между корпусом запальника и электродным стержнем, возвышающийся торец которого предназначен для контроля пламени основной горелки.

Процесс зажигания газа в нагревательной установке происходит в два этапа. На первом в запальник подается небольшое количество газа и включается электроискровое зажигание. При возникновении в запальнике устойчивого воспламенения происходит ионизация и начинает протекать постоянный ток в сотые доли миллиампер.

Устройство контроля электрода подает сигнал системе управления, открывается электроклапан, и происходит поджигание основного потока газа. С этого момента электрод формирует управляющий сигнал уже от ионизации его пламени.

Система управления настроена на определенный уровень ионизации, поэтому, если ее интенсивность снижается до заданного предела и ток в плазме падает, происходит отключение подачи газа и гашение пламени. После этого весь цикл с использованием запальника повторяется в автоматическом режиме до тех пор, пока процесс горения не станет устойчивым.

  • неправильная пропорция газовоздушной смеси, формируемой в запальнике;
  • нагар или загрязнение на ионизационном электроде;
  • недостаточная мощность потока пламени;
  • уменьшение сопротивления изоляции из-за накопления в запальнике токопроводящей пыли.

Одним из главных достоинств ионизационных электродов является мгновенная скорость срабатывания при погасании пламени. В отличие от них термопарные датчики формируют сигнал только через несколько секунд, которые им требуются для остывания.

Кроме того, ионизационные электроды недороги, т. к. имеют очень простую конструкцию: металлический стержень, изолирующая втулка и разъем. Также они очень просты в эксплуатации и обслуживании, которое заключается в очистке стержня от нагара.

К недостаткам датчиков ионизационного контроля можно отнести их ненадежность при работе с газовым топливом, содержащим большие доли водорода или окиси углерода. В этом случае в пламени генерируется недостаточное количество свободных ионов и электронов, что приводит к невозможности удержания стабильного тока. Кроме того, этот метод может оказаться непригодным при работе в условиях повышенной запыленности.

Конструктивные особенности

Вместе с тем температура в верхней части пламени при горении природного газа может достигать 1600 °C, поэтому контрольные электроды размещают в его корне, где температура ниже — от 800 до 900 °C.

Изолирующий цоколь ионизационного электрода, с помощью которого он монтируется на запальнике, представляет собой высокопрочную и жаростойкую керамическую втулку.

Ионизационный электрод может быть только контрольным, а может выполнять сразу две функции: запальную и контрольную. Во втором случае для зажигания пламени запальника на него подается высокое напряжение, формирующее искру.

Через несколько секунд оно отключается, происходит переключение на питание постоянным током и переход в контрольный режим. Если электрод выполняет только контрольную функцию, то его изоляция, разъем и кабель должны соответствовать требованиям низковольтной аппаратуры, эксплуатируемой при высоких температурах.

При использовании его в качестве запального сопротивление изоляции должно выдерживать на пробой напряжение 20 кВ, а подсоединение к блоку управления производиться высоковольтным кабелем.

При установке ионизационного электрода в корпус конкретной горелки необходимо применять изделие оптимальной длины. Слишком большой стержень будет перегреваться, деформироваться и быстрее покрываться нагаром.

В случае малой длины возможны ситуации, когда ионизационный поток будет прерываться при уходе пламени от конца электрода к другому краю корпуса горелки. В реальных условиях длину электрода обычно подбирают экспериментальным путем.

В бытовых газовых плитах для зажигания используют электроискровые запальные электроды, а для контроля за пламенем — термопарные датчики. А почему в бытовых устройствах не применяют ионизационные электроды в раздельном или совмещенном виде?

Ведь они дешевле термопар. Если вы знаете ответ на этот вопрос, поделитесь, пожалуйста, информацией в комментариях к данной статье.

Источник

Решено Как эмитируется электрод ионизации при ремонте платы?

Неисправности газовых котлов Ремонт газовых котлов Диагностика газовых котлов Схемы и инструкции Марки и модели котлов Популярные темы

Неисправности

Этот блок для тех, кто впервые попал на страницы нашего сайта. В нашем форуме рассмотрены различные неисправности встречающиеся в газовых котлах и колонках. Наиболее частое проявление дефектов следующие:

  • не включается
  • тухнет газовая горелка
  • не набирает температуру
  • не выполняет команды управления
  • слабое пламя
  • свист и шум в котле
  • в системе холодная вода
  • проблема циркуляционного насоса

Многие неисправности являются не причиной, а следствием другой неисправности. Подробную информацию Вы найдете в разделе ремонта газового оборудования.

Ремонт газовых котлов и колонок

Учитывайте, что ремонт газового оборудования и монтаж отопления должны выполнять профессиональные, сертифицированные работники. На форуме размещены темы рассчитанные на мастеров в этой области. Неквалифицированный ремонт может иметь очень серьёзные последствия. В форуме рассматриваются следующие вопросы:

  • Диагностика
  • Определение неисправности
  • Методы ремонта
  • Поиск запчастей
  • Обслуживание
  • Установка и настройка

  • Диагностика газовых котлов

    Как правило, большинство современных газовых котлов имеют внутреннюю систему диагностики, которая самостоятельно выявляет какую-либо неисправность и высвечивает ее код на цифровом дисплее. Так как каждая модель имеет свои коды, они перечислены не здесь, а в соответствующих темах форума

    Из кодов ошибок мастер выявляет наиболее вероятную причину поломки. Однако некоторые дефекты процессор (контроллер) не определяет в кодах ошибок, они требуют детальных ручных измерений или настройки узлов оборудования. По результатам диагностики возможно потребуется:

    • Замена отдельных компонентов
    • Замена платы в сборе
    • Замена узлов
    • Настройка узлов

  • Где скачать схему газового котла ?

    Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    • Файлы для ремонта газовых котлов
    • Запросы схем и прошивок

    Многие файлы (схемы, прошивки, инструкции) отображаются и доступны только принятым в группу профессионального ремонта. Для их просмотра и доступа к ним, регистрации аккаунта не достаточно. При отстутствии на сайте необходимой схемы и прочей документации, участники запрашивают ее в соответствующем разделе.

    Какие марки рассмотрены

    В форуме рассмотрены практически все используемые марки котлов.
    Собрана большая база по неисправностям, методам их диагностики и устранения. Приведем несколько ссылок:

    Популярные темы

    В процессе ремонта у мастеров возникают интересные темы для обсуждения. Перечислим только некоторые:

    Источник

    Как проверить ток ионизации мультиметром на котле. Назначение и принцип работы ионизационного электрода

    За сгоранием газа в большинстве современных котлов следит ионизационный электрод, ток которого постоянно оценивается блоком контроля пламени. Благодаря ему чётко отслеживаются колебания давления газа и энергоотдача, в результате чего процесс горения происходит с наибольшей эффективностью.

    Принцип работы автоматики газового котла

    Контроль пламени по току ионизации

    Контроль пламени в горелке в большинстве современных котлов осуществляется с помощью ионизационного электрода. Принцип контроля пламени по току ионизации основан на том, что при сжигании газа образуется множество свободных электронов и ионов. Эти частицы «притягиваются» к ионизационному электроду и вызывают протекание тока ионизации величиной в десятки микроампер (зависит от модели котла). Ионизационный электрод соединяется с входом блока контроля тока ионизации (автоматом горения). Если при горении пламени запальника образуется достаточное количество свободных электронов и отрицательных ионов, то автомат горения разрешает работу (розжиг) основной горелки. В случае если интенсивность ионизации падает ниже определенного уровня, то основная горелка отключается даже в том случае, если она работала нормально. В простейших котлах оценивается наличие тока ионизации. Причиной выхода значения тока ионизации из заданного диапазона обычно является отсутствие требуемого соотношения газ/воздух в запальнике, загрязнение или обгорание ионизационного (контрольного) электрода, но также может являться уменьшение сопротивления между ионизационным электродом и корпусом запальника, которое чаще всего происходит из-за оседания токопроводящей пыли на запальное устройство. В современных котлах автомат горения выполняет не только функцию контроля наличия пламени, — на нём строиться вся автоматика управления горелки. По величине тока ионизации блок контроля пламени понимает, как происходит горение и, основываясь на этих данных, управляет скоростью вентилятора и клапаном подачи газа. В некоторых запальных устройствах ионизационный электрод выполняет функцию запального электрода. В этом случае на него в течение фиксированного времени подается высокое напряжение с запального трансформатора для поджига запальника. После того как поджиг запальника произведен, контрольный электрод переходит в режим контроля тока ионизации – цепи поджига отключаются и электрод соединяется с входом автомата горения. В этом случае возможна еще одна причина пропадания сигнала ионизации, связанная с обрывом во вторичной обмотке трансформатора. Но искра в этом случае может, все равно, нормально генерироваться, поэтому данную неисправность иногда трудно определить.

    Но также на величину тока ионизации может влиять наводка от инвертора в инверторном режиме, несинусоидальное напряжения инвертора, некачественный ноль или плохое заземление. В этом случае блок управления получает искаженную величину тока ионизации, что может привести к неправильной оценке процесса горения и неверной работе автомата горения: неустойчивому пламени, срыву пламени или полному прекращению подачи газа. Исключаем несинусоидальные инверторы из-за их непригодности для работы с котлами, а также инверторы, дающие синусоиду лишь в ограниченном диапазоне мощности (некоторые модели Cyberpower и др.). Если котёл нормально работает от сетевого напряжения, а в инверторном режиме перестаёт работать, то причиной может быть наводка инвертора на нейтраль (при условии правильного подключения нуля и фазы). Проверить это довольно просто. Для этого необходимо измерить напряжение между нулём и землёй на входе инвертора и сравнить полученное значение со значением, полученным на выходе инвертора (между нулём и землёй) в режиме электропитания котла от батареи (инверторный режим). Для включения инверторного режима необходимо выключить фазу защитным автоматом, не вынимая сетевую вилку инвертора из розетки, что приведёт к отключению нуля на входе инвертора и соответственно на его выходе. В идеале полученные значения должны совпасть, что будет свидетельствовать, что инвертор не вносит потенциал на нулевой провод. Синусоидальные

    Тепловые агрегаты, работающие на природном газе (печи, котлы, стенды нагрева и т.п.) должны оборудоваться системой контроля наличия пламени. В процессе работы тепловых агрегатов возможны ситуации, при которой пламя горелки (факел) потухнет, но газ будет продолжать поступать во внутреннее пространство агрегата и окружающую среду и при наличии искры или открытого огня возможно воспламенение этого газа и даже взрыв. Наиболее часто потухание пламени происходит из-за отрыва факела.

    Читайте также:  Датчик температуры для погружного насоса

    Наличие пламени контролируют либо с помощью ионизационного электрода, либо с помощью фотодатчика. Как правило, с помощью ионизационного электрода контролируют горение запальника, который, в свою очередь, в случае необходимости воспламенит основную горелку. Фотодатчиками контролируют пламя основной горелки. Фотодатчик для контроля пламени запальника не применяют ввиду малого размера пламени запальника. Применение ионизационного электрода для контроля пламени основной горелки не рационально, так как электрод, помещенный в пламя основной горелки будет быстро обгорать.

    Фотодатчики различаются по чувствительности к различной длине волны светового потока. Одни фотодатчики реагируют только на видимый и инфракрасный спектр светового потока от горящего пламени, другие воспринимают только его ультрафиолетовую составляющую. Самым распространенным фотодатчиком, реагирующим на видимую составляющую светового потока, является датчик ФДЧ.

    Световой поток воспринимается фоторезистором датчика, и после усиления преобразуется либо в выходной сигнал 0-10В, пропорциональный освещенности, либо подается на обмотку реле, контакты которого замыкаются, если освещенность превышает установленный порог. Тип выходного сигнала — сигнал 0-10В или контакты реле — определяется модификацией ФДЧ. Фотодатчик ФДЧ обычно работает с вторичным прибором Ф34. Вторичный прибор обеспечивает питание ФДЧ напряжением +27В, на нем также выставляются пороги срабатывания в том случае, если используется ФДЧ с токовым выходом. Кроме того, в зависимости от модификации, Ф34 может контролировать сигнал от ионизационного электрода запальной горелки, управлять розжигом и работой горелки с помощью встроенных реле.

    К недостаткам фотодатчиков видимого света можно отнести то, что они реагируют на любой источник света — солнечный свет, свет фонарика, световое излучение нагретых элементов конструкции, футеровки сталеразливочных ковшей и т.п. Это ограничивает их применение, например в стендах нагрева, так как ложные срабатывания от светящейся разогретой футеровки ковшей блокируют работу автоматики (ошибка «ложное пламя»). Наиболее широко ФДЧ применяются на печах сушки песка, ферросплавов и т.п. — там где температура нагрева редко превышает 300-400°С, а значит отсутствует свечение разогретых элементов конструкции печи.

    Отличительной особенностью ультрафиолетовых фотодатчиков (УФД), например UVS-1 фирмы Kromschroeder, является то, что они реагируют только на ультрафиолетовую составляющую светового потока, излучаемого пламенем горелки. В световом потоке от разогретых тел, элементов конструкций печей, футеровки ковшей ультрафиолетовая составляющая мала. Поэтому к посторонней засветке датчик «равнодушен», как и к солнечному свету.

    Основой этого датчика является вакуумная лампа — электронный фотоумножитель. Как правило, питаются эти датчики напряжением 220В и имеют токовый выходной сигнал, который меняется от 0 до нескольких десятков микроампер. К недостаткам ультрафиолетовых датчиков можно отнести то, что вакуумная лампа фотоумножителя имеет ограниченный срок службы. Через пару лет эксплуатации лампа теряет свою эмиссионную способность и датчик перестает работать. Сигнал с УФД передается на автомат горения серии IFS, функции которого аналогичны функциям Ф34.

    Фотодатчики должны иметь, так сказать, визуальный контакт с пламенем горелки, поэтому они расположенны в непосредственной близости от него. Как правило, они распологаются со стороны горелки под углом 20-30° к ее оси. Из-за этого они подвержены сильному нагреву тепловым излучением от стенок агрегата и радиационному нагреву через визирное окно. Для зашиты фотодатчика от перегрева применяют защитные стекла и принудительный обдув. Защитные стекла производятся из жаропрочного кварцевого стекла и устанавливаются на некотором удалении перед визирным окном фотодатчика. Обдув датчика осуществляется либо вентиляторным воздухом (если горелка установки работает на вентиляторном воздухе), либо сжатым воздухом пониженного давления. Подаваемый объем воздуха осуществляет охлаждение фотодатчика не только за счет процессов теплоотдачи, но и из-за того, что вокруг него создается область повышенного давления, которая как бы отталкивает горячий воздух, не давая ему контактировать с датчиком.

    Контроль наличия пламени запальника в большинстве случаев осуществляется ионизационным электродом. Принцип контроля пламени по ионизации основан на том, что при сжигании газа образуется множество свободных электронов и ионов. Эти частицы «притягиваются» к ионизационному электроду и вызывают протекание тока ионизации величиной в десятки микроампер. Ионизационный электрод соединяется с входом прибора контроля наличия ионизации (автоматом горения). Если при горении пламени запальника образуется достаточное количество свободных электронов и отрицательных ионов, то в автомате горения срабатывает пороговое устройство разрешающее работу (или розжиг) основной горелки. В случае если интенсивность ионизации падает ниже определенного уровня, то основная горелка отключается даже в том случае, если она работала нормально. На размещенном ниже видео показано, как благодаря нагреву воздуха между обкладками конденсатора (в нашем случае одна обкладка это контрольный электрод, другая обкладка — корпус запальника) в цепи начинает протекать электрический ток.

    Основными причинами пропадания ионизации являются отсутствие требуемого соотношения газ-воздух запальника, загрязнение или обгорание ионизационного (контрольного) электрода. Еще одной причиной пропадания сигнала ионизации может являться уменьшение сопротивления между ионизационным электродом и корпусом запальника, которое чаще всего происходит из-за оседания токопроводящей пыли на запальное устройство.

    Автомат горения часто выполняет не только функцию контроля наличия пламени — на нем строиться вся автоматика управления розжигом горелки, как, например, это реализовано в фирмы Hegwein.

    Как правило, ионизационный электрод размещается вдоль оси запальной горелки, конец электрода должен находиться в «корне» пламени запальника. В некоторых запальных устройствах ионизационный электрод выполняет функцию запального электрода. В этом случае на него в течении фиксированного времени подается высокое напряжение с для поджига запальника. После того как поджиг запальника произведен контрольный электрод переходит в режим контроля ионизации – цепи поджига отключаются и электрод соединяется с входом автомата горения. В этом случае возможна еще одна причина пропадания сигнала ионизации, связанная с обрывом во вторичной обмотке трансформатора. Но искра в этом случае может все равно нормально генерироваться, поэтому данную неисправность иногда трудно определить.

    Большое значение для стабильной работы запального устройства имеет правильно выставленное соотношение газ-воздух. В большинстве случаев требуемые значения давления газа и воздуха приводятся изготовителем в паспорте запальной горелки. Не смотря на то, что говоря «соотношение газ-воздух» в большинстве случаев имеют в виду их объемное соотношение (один объем газа на десять объемов воздуха), но настраивают запальник, да и горелку, впрочем, тоже, по давлению, так как это сделать намного проще и дешевле. Для этого конструкцией запальника предусмотрено подключение контрольного манометра к газовому и воздушному тракту в определенных местах.

    Ионизационный электрод крепиться к корпусу запальника через керамическую изолирующую втулку и соединяется с входом автомата горения экранированным одножильным кабелем. Если ионизационный электрод используется еще и в качестве запального, то с запальным трансформатором он соединяется специальным высоковольтным кабелем, например, ПВ-1. Изолирующая втулка изготавливается из керамики с большим содержанием Al2O3, которая характеризуется высокой механической прочностью, температурной стойкостью и электрической прочностью до 18 кВ. Ионизационный электрод изготавливается канталя — металлического сплава устойчивого к высоким температурам и электрохимической коррозии

    Установки постоянно работающие при температурах свыше 800°С (мартеновские печи, например) могут и не оснащаться системами контроля наличия факела. Это связано с тем, что температура воспламенения газа находиться в пределах 645 – 750°С. Таким образом, в случае отрыва факела исходящий из сопла горелки газ воспламениться от разогретой кладки внутреннего пространства теплового агрегата. Очень часто перед соплом горелки выкладывают специальный горелочный камень – он воспламеняет поток газа и стабилизирует горение.

    Для повышения надежности работы и уменьшения количества остановов установки из-за пропадания ионизации можно сделать контроль наличия пламени не постоянным, осуществляя его по схеме «ИЛИ». В этом случае, если установка прогрелась до температур свыше 750°С и сигнал ионизации с запальной горелки по какой то причине пропал, то основная горелка все равно продолжит работу.

    Дополнительную информацию вы можете найти в разделе .

    Современный газовый котёл – это сложный инженерный агрегат, используемый для обогрева воды и жилых помещений. Контролировать и связывать работу всех механизмов его помогают специальные датчики для газовых котлов. С их принципом действия стоит разобраться. Согласны?

    Именно благодаря датчикам соблюдаются ключевые принципы эксплуатации газового оборудования – обеспечивается безопасность и автоматизация работы. В представленной нами статье детально описаны все виды этих компактных приборов и особенности их установки. С учетом наших советов вы сможете безупречно оборудовать котел.

    Главный принцип работы всех датчиков – это преобразование сигнала и интерпретация результата для оперативного информирования пользователя об изменениях в работе газового котла.

    Газовое оборудование оснащено комплектом дополнительного оборудования, благодаря которому его можно программировать на эксплуатацию в определенном режиме.

    Компактный датчик перегрева продлевает срок эксплуатации газового котла и не дает ему испортиться из-за высокой температуры воды

    Ключевые датчики, отвечающие за безопасность оборудования:

    • тяги;
    • температуры (уличный и комнатный);
    • пламени;
    • датчики давления (пресостат);
    • перегрева.

    Рассмотрим характеристики и особенности эксплуатации каждого из них.

    Для определения силы тяги в аппарате используется датчик тяги или термореле для , он же отвечает за корректное сжигание газа.

    Благодаря этому небольшому датчику тяги угарный газ не попадёт в помещение, а будет выведен через дымоход на улицу

    Тяга необходима для избавления котла от угарного газа. Нормальная тяга «выводит» продукты сгорания из помещения, а не в него, слабая может спровоцировать затухание колонки и, как следствие, аварию.

    Чаще всего такие датчики устанавливаются в дымоуловителе. В случае поломки датчика дым от продуктов сгорания проникает в помещение и создает угрозу безопасности жизни.

    Тип датчика зависит от вида котла, к которому хотите его подключить. Первый вид – котлы с естественный тягой, второй – с принудительной.

    На схеме наглядно изображена разница в работе открытой и закрытой камер сгорания в газовых котлах, а также в устройстве дымохода

    В устройствах с естественной тягой камера сгорания – открытая. При нормальной работе угарный газ выходит через дымоход, а предохранительный термостат следит за наличием тяги и температурой уходящих газов. В таких котлах используется датчик в виде металлической пластины с прикреплённым к ней контактом.

    Принцип его работы заключается в подаче сигнала клапану, который в нужный момент перекроет поток газа к горелке. Внутри термореле расположена металлическая полоска, реагирующая на изменение температуры.

    Термореле настраивается на определённую температуру в соответствии с находящимся в котле топливом. Если используется природный газ, то границы температуры будут от +75 °С до +950 °С, в случае применения сжиженного – +75-+1500 °С.

    Если происходит сбой в процессе выхода угарного газа (через дымоход на улицу), иными словами, нарушается сила тяги, то приспособление срабатывает. Когда это происходит, температура внутри аппарата повышается, металл расширяется, датчик срабатывает и котёл остывает.

    Владельцам газовых аппаратов с естественной тягой стоит обратить внимание на понятие «обратная тяга». Простыми словами – это процесс, при котором угарный газ поступает в помещение, а не выводится в дымоход.

    Сбой происходит при колебании температур, некорректном монтаже дымохода или его засорении, также могут повлиять и неточные расчёты размеров дымохода. Независимо от причины возникновения обратной тяги, её необходимо немедленно устранить, дабы избежать отравления угарным газом.

    Сильная обратная тяга в действии. Она может спровоцировать отравление жителей квартиры или дома из-за большого количества угарного газа в помещении

    В устройствах с принудительной тягой установлена закрытая камера сгорания и газ выводится за счёт турбины-вентилятора. Здесь используется датчик-пневмореле, выполненный в виде мембраны.

    При нормальной тяге мембрана немного деформируется под силой угарных газов. Когда поток становится слишком слабым и мембрана остаётся без движения, контакты разъединяются и газовый клапан закрывается. Такой датчик контролирует и работу вентилятора, и скорость продуктов сгорания.

    Если есть сомнения в срабатывании устройства, прерывающего подачу газа в случае его утечки, рядом с газовым оборудованием желательно установить . Установка его настойчиво рекомендована, но необязательна.

    Читайте также:  Датчик ветра для крана

    Причины срабатывания датчика тяги: ошибки в установке котла или дымохода, засорение дымохода или остановка вентилятора (только в аппаратах с принудительной тягой).

    Принцип работы и устройства системы автоматизации работы газового котла детально описаны , с которой мы рекомендуем ознакомиться.

    Принцип работы прессостата

    Прессостат или датчик давления защищает котёл от перегрева во время резкого изменения давления газа или уменьшения тока воды.

    Установка прессостата оберегает газовое оборудование от резких или слишком больших скачков давления и, при необходимости, отключит газовый аппарат

    Визуально – это стандартный электрический датчик или реле, в большинстве случаев с двумя электрическими цепями-корректировщиками. Именно эти цепи и определяют два ключевых режима работы прибора:

    • 1 режим предполагает нормальное давление, во время которого термостатическая мембрана датчика не меняет места расположения и смыкается первая группа контактов. Котёл функционирует в штатном режиме благодаря прохождению тока через эту цепь. Также она всегда связана с общей цепью агрегата.
    • 2 режим режим включается при выходе из нормы какого-то параметра системы. Внутри реле смещается и прогибается термостатическая мембрана. Первая цепь контроллера разъединяется, благодаря мембране, а вторая замыкается. Котельное оборудование прекращает корректную работу. Функционирование дежурного режима, информирующего пользователя котла об аварии, активируется с помощью вторичной цепи датчика.

    Датчик срабатывает даже в случае малейшего повышения температуры в камере сгорания. Он отслеживает минимальное/максимальное значение силы давления, а также регистрирует начало конденсации влаги в продуктах горения или непосредственно в самом газе.

    Что контролирует датчик перегрева?

    Датчик перегрева – это небольшое устройство, предохраняющее газовый котёл от закипания, которое может произойти при повышении температуры более +100 °С. Когда достигается граничная температура в контуре нагрева, датчик перегрева разъединяет контакты и выключает газовый аппарат.

    Специальный датчик NTC (аббревиатура означает «позитивный температурный коэффициент») – это погружное устройство. которое контролирует температуру внутри газового котла

    Основу устройства составляют либо терморезисторы, либо биометрические пластины, иногда это могут быть рабочие датчики NTC.

    Причины перегрева газового котла и варианты их устранения:

    1. Отсутствие в отопительном контуре циркуляции из-за засорения фильтров. Необходимо аккуратно прочистить все фильтры, промыть их или, при необходимости, заменить новыми.
    2. «Завоздушивание» отопительного контура. Избавиться от него можно, просто удалив воздух.
    3. Засорился проток из-за большого слоя накипи, при этом слышно, будто котёл «стучит» или издает хлопки. Удаляют лишнее в аппарате при помощи специальных химических средств или кислот.
    4. Во время запуска котла слышны звуки шума, и устройство может выдавать ошибку «недостаточная циркуляция». Подобная ситуация возможна при пуске котла, после его долгосрочного простоя и без предварительного прогона вентиляционной системы. Причиной может стать засорение в насосе из-за простоя. Нужно насос разобрать и тщательно промыть, а после повторить запуск вновь.
    5. Место установки оборудования было выбрано неправильно. В таком случае, если в помещении повышена влажность воздуха или низкая температура, то металл, из которого изготовлен котёл, начнёт быстро портиться.

    При любой причине перегрева её необходимо немедленно удалить, чтобы избежать поломки котла или взрыва. Избавится от перегрева пользователь сможет как самостоятельно, так и используя услуги опытного мастера.

    Уличные и комнатные датчики температуры

    Основная задача датчика температуры для газового котла заключается в контроле температуры и своевременном информировании об её изменениях. Современные устройства реагирования работают по принципу электрического сопротивления, позволяющего фиксировать рабочие показания.

    По способу передачи информации датчики температуры бывают:

    • проводные (связываются с контроллером при помощи кабеля);
    • беспроводные (для передачи сигнала используется беспроводная радио-связь, такие модели состоят из 2 частей).

    По типу управления они делятся на простые (поддерживают температуру в помещении) и программируемые (в наличии много функций, позволяющих влиять на тепловой режим в доме).

    Сложный программируемый датчик температуры удобно разместить в комнате и, используя несколько кнопок, регулировать температурный режим

    В некоторых моделях датчиков есть встроенный термостат, который позволяет контролировать уровень влажности в помещении. Также есть функция уменьшения/увеличения влажности.

    По способу размещения различают следующие приборы:

    • накладные – крепятся на трубы контура отопления;
    • погруженные – находятся с теплоносителем в постоянном контакте.

    При этом комнатные расположены непосредственно в помещении, а уличные устанавливаются снаружи и реагируют на изменения температуры за окном.

    Первые два вида используются для теплоносителя, т.е. для бойлера, а вторые два – для контроля температуры воздуха. Накладные монтируются на наружную поверхность трубопровода с помощью специальной ленты или хомута.

    С помощью простого накладного датчика температуры пользователь сможет без труда настроить комфортные температурные показатели, которые и будет поддерживать котёл

    Погружные датчики нагрева воды для котла размещаются только в специальных местах внутри аппарата в непосредственной близости к теплоносителю.

    Элементом реагирования для измерения градуса температуры может быть электрический преобразователь (термопара, термометр сопротивления), заранее настроенный на определённой диапазон. Такие приборы могут быть с дисплеем, в некоторых моделях заранее заложена возможность калибровки.

    Уличный датчик температуры позволяет работать котлу не все время, а только по необходимости. Это увеличивает срок эксплуатации газового котла и потребление самого газа. При его установке следует заранее предусмотреть защиту от механических и погодных (влаги, мороза) воздействий.

    В комплект выносного оборудования входят:

    • собственно датчик;
    • клеммы для зажима электрического кабеля;
    • кабельная муфта;
    • пластиковый корпус, в котором будут находиться все детали устройства.

    При изменениях температуры за окном датчик газового котла приводит в работу погодозависимую программу, которая вносит изменения в температурный режим нагрева воды для отопления.

    Уличный датчик температуры крепится на наружную стену помещения. При его выборе следует заранее проверить защитные механизмы устройства

    Комнатный датчик реагирует на изменение температуры в помещении, затем отправляет информацию автоматике, которая управляет котлом. И уже она даёт сигнал для уменьшения или увеличения мощности нагрева отопительного контура.

    Принцип работы состоит в том, что пользователю необходимо изначально установить необходимую температуру в помещении, а техника уже сама будет контролировать газовое оборудование.

    Котёл будет включённым только в том случае, если температура воздуха в отапливаемом помещении будет ниже установленной раннее. Таким образом, вы сократите ежемесячный счёт за газ примерно на треть.

    Комнатный температурный датчик позволит вам настроить границы комфортного температурного режим, а дальше техника будет его поддерживать в постоянном режиме

    При выборе датчика температуры особое внимание обращайте на диапазон температур. Оптимальным вариантом будет от – 10 °С до + 70 °С. Также учтите и пороговую температуру. Есть модели, реагирующие на снижение температуры на 1/4 градуса.

    Это не очень удобно, так как котёл будет часто отключаться. Однако большинство срабатывают при смене температуры в 0.5 или 1 градус.

    Размеры самого устройства, в основном, небольшие: 2×3 см. В проводных моделях длина кабеля должна быть не меньше 5 м. Если будет использоваться беспроводная связь, то обязательно протестируйте радиосигнал.

    Правила и нюансы газового отопительного оборудования подробно изложены в статье, материал которой полностью посвящен указанному вопросу.

    Датчик пламени – надёжная защита вашего котла

    Одним из ключевых гарантов безопасной работы для газового котла является датчик пламени. Его основная задача – максимально быстро отправить сигнал о затухании пламени на горелке системе автоматики для перекрывания газа, чтобы не допустить его утечки и взрыва всего устройства. Также этот датчик должен информировать контроллер о качестве сжигания газа, о наличии пламени, и об интенсивности горения.

    Разновидности датчиков пламени

    Они зависят от метода контроля пламени при работе газового котла. Контроль может быть прямым или косвенным. Термометрический, фотоэлектрический, ультразвуковой, ионизационный и относятся к прямым методам.

    Косвенным принято считать контроль за формированием угарного газа в топке, за давлением топлива в трубопроводе, через который оно поступает, за силой давления или его колебаниями перед горелкой. Сюда же входит проверка неиссякаемого источника воспламенения.

    Базирующийся на термоэлектрическом методе контроля датчик включает в себя термопару (в неё входит датчик и электромагнитный клапан). Термопара размещена в непосредственной близости к горелке котла, а электромагнитный клапан монтируется на газопроводе, по которому подаётся газ в поджигаемую горелку.

    Подключение датчика пламени позволяет вам использовать газовый котёл или колонку в домашних условиях, не опасаясь за собственную жизнь

    Во многих современных аппаратах устанавливают датчики ионизации пламени . Их принцип работы состоит в том, что при сжигании пламени между корпусом и электродом датчика возникает ионизационный ток. Он формируется в случае притяжения ионов. Если такой ток отсутствует, то это становится сигналом для прекращения подачи газа.

    Если при сгорании пламени запальника образуется необходимое количество свободных электронов и отрицательных ионов, то автоматика активизирует ключевое устройство, разрешающее работу основной горелки.

    Обратите внимание, что корректная работа ионизационного датчика возможна только при точном фазном подключении котла отопления к электрической сети.

    Именно этот механизм намного эффективнее других в случае сгорании газа, так как газ фактически не вырабатывает свет, поэтому не всегда реагирует фотоэлемент. Инфракрасное излучение сохраняется ещё немного времени, которого может быть достаточно для скопления большого количества газа, что автоматически делает инфракрасный датчик пламени менее безопасным.

    Датчик ионизации монтируется внутри самого котла. Он предотвращает аварии на газовом оборудовании и оберегает жизнь и имущество владельцев дома или квартиры

    Фотодатчики контролируют пламя ключевой горелки, но они не применяются для диагностики пламени запальника из-за недостаточного размера его пламени. Разделяют такие датчики по их реагированию на длину волны светового потока: одни срабатывают на видимый и инфракрасный спектр потока света от горящего пламени, другие же «видят» только его ультрафиолетовый компонент.

    Для корректной работы фотодатчики должны иметь «непосредственный контакт» с пламенем горелки, поэтому их монтируют в непосредственной близости от него. Их устанавливают со стороны горелки под углом к её оси в 20-30°. Из-за этого фотодатчики подвержены перегреву тепловым излучением от стенок агрегата и нагрева через смотровое окно.

    Дабы защитить фотодатчик от перегрева, применяют жароустойчивые кварцевые стекла и принудительный обдув, который осуществляется или сжатым воздухом пониженного давления, или производимым вентилятором воздухом.

    Датчик пламени может срабатывать. когда нарушается ключевое соотношение газ-воздух или происходит загрязнение устройства розжига или клапана. Если датчик пламени сломался по каким-либо причинам, его следует немедленно заменить. Это сохранит жизнь и здоровье вам и вашей семье.

    Оснащение газового отопительного оборудования полным набором датчиков безопасности и устройствами автоматики не исключает необходимости в . О том, как производятся техосмотры и ремонты газовых агрегатов, детально описано в рекомендуемой нами статье.

    Выводы и полезное видео по теме

    Еще больше интересной информации о датчиках для котлов – в представленных ниже видеороликах.

    О различных типах котлов и подходящих к ним датчиках. На примере показана установка датчика тяги.

    Демонстрируется полная пошаговая проверка датчика пламени в домашних условиях, особенности её работы.

    Датчики, если они не входят в комплектацию к котлу, следует подбирать того же производителя, что и газовый аппарат. Неисправность любого из них грозит аварией или поломкой котла, поэтому требует незамедлительного вмешательства.

    Все описанные датчики используются для одной цели – обезопасить пользователя газового котла от аварий и опасных для жизни ситуаций. Покупка каждого из них – это инвестиция в безопасность оборудования, жилья и человеческой жизни.

    Хотите рассказать, как подбирали датчики для собственного газового оборудования? Располагаете полезными данными, не отмеченными в статье? Пишите, пожалуйста, комментарии, делитесь мнением и информацией, размещайте фото по теме статьи в находящемся ниже блоке.

    Ионизационные электроды используют в датчиках контроля пламени газовых горелок. Их главная задача — сигнализировать блоку управления о прекращении горения и необходимости перекрыть поступление газа. Эти устройства применяют для контроля непрерывности пламени в промышленных печах, домашних котлах отопления, газовых колонках и кухонных плитах. Нередко их дублируют фотодатчиками и термопарами, но в самых простых тепловых аппаратах ионизационный электрод является единственным средством контроля за зажиганием газа и непрерывностью его горения.

    Читайте также:  Тп100 датчик температуры овен

    Если в нагревательном устройстве по каким-то причинам пропадает пламя, то сразу же должна быть прекращена подача газа. В противном случае он достаточно быстро заполнит объем установки и помещение, что может привести к объемному взрыву от случайной искры. Поэтому все нагревательные установки, работающие на природном газе, в обязательном порядке должны оснащаться системой слежения за наличием пламенем и блокировки подачи газа. Ионизационные электроды контроля пламени обычно выполняют две функции: во время зажигания газа от запальника разрешают его подачу при наличии устойчивой искры, а при исчезновении пламени подают сигнал на отключение газа основной горелки.

    Принцип работы ионизационного электрода основан на физических свойствах пламени, которое по своей сути является низкотемпературной плазмой, т. е. средой, насыщенной свободными электронами и ионами и поэтому обладающей электропроводностью и чувствительностью к электромагнитным полям. Обычно на него подается положительный потенциал от источника постоянного тока, а корпус горелки и запальник присоединяются к отрицательному. На рисунке ниже показан процесс возникновения тока между корпусом запальника и электродным стержнем, возвышающийся торец которого предназначен для контроля пламени основной горелки.

    Процесс зажигания газа в нагревательной установке происходит в два этапа. На первом в запальник подается небольшое количество газа и включается электроискровое зажигание. При возникновении в запальнике устойчивого воспламенения происходит ионизация и начинает протекать постоянный ток в сотые доли миллиампер. Устройство контроля электрода подает сигнал системе управления, открывается электроклапан, и происходит поджигание основного потока газа. С этого момента электрод формирует управляющий сигнал уже от ионизации его пламени. Система управления настроена на определенный уровень ионизации, поэтому, если ее интенсивность снижается до заданного предела и ток в плазме падает, происходит отключение подачи газа и гашение пламени. После этого весь цикл с использованием запальника повторяется в автоматическом режиме до тех пор, пока процесс горения не станет устойчивым.

    Основные причины срабатывания сигнализации о снижении уровня ионизации в пламени:

    • неправильная пропорция газовоздушной смеси, формируемой в запальнике;
    • нагар или загрязнение на ионизационном электроде;
    • недостаточная мощность потока пламени;
    • уменьшение сопротивления изоляции из-за накопления в запальнике токопроводящей пыли.

    Одним из главных достоинств ионизационных электродов является мгновенная скорость срабатывания при погасании пламени. В отличие от них термопарные датчики формируют сигнал только через несколько секунд, которые им требуются для остывания. Кроме того, ионизационные электроды недороги, т. к. имеют очень простую конструкцию: металлический стержень, изолирующая втулка и разъем. Также они очень просты в эксплуатации и обслуживании, которое заключается в очистке стержня от нагара.

    К недостаткам датчиков ионизационного контроля можно отнести их ненадежность при работе с газовым топливом, содержащим большие доли водорода или окиси углерода. В этом случае в пламени генерируется недостаточное количество свободных ионов и электронов, что приводит к невозможности удержания стабильного тока. Кроме того, этот метод может оказаться непригодным при работе в условиях повышенной запыленности.

    Конструктивные особенности

    Металлический стержень ионизационного электрода изготовлен из хромали — сплава железа с хромом и алюминием, который имеет жаростойкость около 1400 °C. Вместе с тем температура в верхней части пламени при горении природного газа может достигать 1600 °C, поэтому контрольные электроды размещают в его корне, где температура ниже — от 800 до 900 °C. Изолирующий цоколь ионизационного электрода, с помощью которого он монтируется на запальнике, представляет собой высокопрочную и жаростойкую керамическую втулку.

    Ионизационный электрод может быть только контрольным, а может выполнять сразу две функции: запальную и контрольную. Во втором случае для зажигания пламени запальника на него подается высокое напряжение, формирующее искру. Через несколько секунд оно отключается, происходит переключение на питание постоянным током и переход в контрольный режим. Если электрод выполняет только контрольную функцию, то его изоляция, разъем и кабель должны соответствовать требованиям низковольтной аппаратуры, эксплуатируемой при высоких температурах. При использовании его в качестве запального сопротивление изоляции должно выдерживать на пробой напряжение 20 кВ, а подсоединение к блоку управления производиться высоковольтным кабелем.

    При установке ионизационного электрода в корпус конкретной горелки необходимо применять изделие оптимальной длины. Слишком большой стержень будет перегреваться, деформироваться и быстрее покрываться нагаром. В случае малой длины возможны ситуации, когда ионизационный поток будет прерываться при уходе пламени от конца электрода к другому краю корпуса горелки. В реальных условиях длину электрода обычно подбирают экспериментальным путем.

    В бытовых газовых плитах для зажигания используют электроискровые запальные электроды, а для контроля за пламенем — термопарные датчики. А почему в бытовых устройствах не применяют ионизационные электроды в раздельном или совмещенном виде? Ведь они дешевле термопар. Если вы знаете ответ на этот вопрос, поделитесь, пожалуйста, информацией в комментариях к данной статье.

    Так как в промышленности сейчас очень широко используются топки для создания разного рода материала, то очень важно следить за ее стабильной работой. Чтобы обеспечить это требование, нужно использовать датчик контроля пламени. Контролировать наличие позволяет определенный набор датчиков, основное предназначение которого — это обеспечение безопасной работы разного рода установок, сжигающих твердое, жидкое или газообразное топливо.

    Описание прибора

    Кроме того, что датчики контроля пламени занимаются обеспечением безопасной работы топки, они также принимают участие и при розжиге огня. Этот этап может осуществляться в автоматическом или же полуавтоматическом режиме. Во время работы в этом же режиме они следят за тем, чтобы топливо сгорало с соблюдением всех требуемых условий и защиты. Другими словами, постоянное функционирование, надежность, а также безопасность работы топочных печей полностью зависят от правильной и безотказной работы датчиков контроля пламени.

    Методы контроля

    На сегодняшний день разнообразие датчиков позволяет применять различные методы контроля. К примеру, чтобы контролировать процесс сжигания топлива, находящегося в жидком или газообразном состоянии, можно использовать методы прямого и косвенного контроля. К первому методу можно отнести такие способы, как ультразвуковой или же ионизационный. Что касается второго метода, то в данном случае датчики реле-контроля пламени будут контролировать немного другие величины — давление, разрежение и т.д. На основе полученных данных система будет делать вывод о том, подходит ли пламя под заданные критерии.

    К примеру, в газовых нагревателях небольшого размера, а также в отопительных котлах отечественного образца используются приборы, которые основаны на фотоэлектрическом, ионизационном или же термометрическом методе контроля пламени.

    Фотоэлектрический метод

    На сегодняшний день наиболее часто применяется именно фотоэлектрический способ контроля. В таком случае приборы контроля пламени, в данном случае это фотодатчики, фиксируют степень видимого и невидимого излучения пламени. Другими словами, аппаратура фиксирует оптические свойства.

    Что касается самих приборов, то они реагируют на изменение интенсивности поступаемого потока света, которое выделяет пламя. Датчики контроля пламени, в данном случае фотодатчики, будут отличаться друг от друга по такому параметру, как длина волны, получаемой от пламени. Очень важно учитывать данное свойство при выборе прибора, так как характеристика спектрального типа пламени сильно отличается в зависимости от того, какой тип топлива сжигается в топке. Во время сгорания топлива существует три спектра, в котором формируется излучение — это инфракрасный, ультрафиолетовый и видимый. Длина волны может быть от 0,8 до 800 мкм, если говорить об инфракрасном излучении. Видимая же волна может быть от 0,4 до 0,8 мкм. Что касается ультрафиолетового излучения, то в данном случае волна может иметь длину 0,28 — 0,04 мкм. Естественно, что в зависимости от выбранного спектра, фотодатчики также бывают инфракрасными, ультрафиолетовыми или датчиками светимости.

    Однако у них есть серьезный недостаток, который кроется в том, что у приборов слишком низкий параметр селективности. Это особенно заметно, если котел обладает тремя или более горелками. В таком случае велик шанс возникновения ошибочного сигнала, что может привести к аварийным последствиям.

    Метод ионизации

    Вторым по популярности является метод ионизации. В данном случае основа метода — это наблюдение за электрическими свойствами пламени. Датчики контроля пламени в таком случае называют датчиками ионизации, а принцип их работы основан на том, что они фиксируют электрические характеристики пламени.

    У данного метода есть довольно сильное преимущество, которое заключается в том, что метод практически не имеет инерции. Другими словами, если пламя гаснет, то процесс ионизации огня пропадает моментально, что позволяет автоматической системе тут же прекратить подачу газа к горелкам.

    Надежность устройств

    Надежность — это основное требование к данным приборам. Для того чтобы достичь максимальной эффективности работы, необходимо не только правильно подобрать оборудование, но еще и правильно его установить. В данном случае важно не только выбрать правильный метод монтажа, но и место крепления. Естественно, что любой тип датчиков обладает своими преимуществами и недостатками, однако если неверно выбрать место установки, к примеру, то вероятность возникновения ложного сигнала сильно увеличивается.

    Если подвести итог, то можно сказать, что для максимальной надежности системы, а также для того, чтобы максимально сократить количество остановок котла по причине возникновения ошибочного сигнала, необходимо устанавливать несколько типов датчиков, которые будут использовать абсолютно разные методы контроля пламени. В таком случае надежность общей системы будет достаточно высокой.

    Комбинированное устройство

    Необходимость в максимальной надежности привела к тому, что были изобретены комбинированные датчики-реле контроля пламени Archives, к примеру. Основное отличие от обычного прибора в том, что устройство использует два принципиально разных метода регистрации — ионизационный и оптический.

    Что касается работы оптической части, то в данном случае она выделяет и усиливает переменный сигнал, который характеризует протекающий процесс горения. Во время горения горелки и пульсирует, данные фиксируются встроенным фотодатчиком. Зафиксированный сигнал передается на микроконтроллер. Второй же датчик ионизационного типа, который может получать сигнал только при условии, что существует зона электропроводности между электродами. Данная зона может существовать лишь при наличии пламени.

    Таким образом, получается, что устройство оперирует двумя разными способами контроля пламени.

    Датчики маркировки СЛ-90

    На сегодняшний день один из довольно универсальных фотодатчиков, который может регистрировать инфракрасное излучение пламени — это датчик-реле контроля пламени СЛ-90. Данное устройство обладает микропроцессором. В качестве основного рабочего элемента, то есть приемника излучения, выступает полупроводниковый инфракрасный диод.

    Данного оборудования подобрана таким образом, чтобы устройство могло нормально функционировать при температуре от -40 до +80 градусов по Цельсию. Если использовать специальный охлаждающий фланец, то эксплуатировать датчик можно при температуре до +100 градусов по Цельсию.

    Что касается выходного сигнала датчика контроля пламени СЛ-90-1Е, то это не только светодиодная индикация, но и «сухого» типа. Максимальная коммутационная мощность данных контактов составляет 100 Вт. Наличие этих двух выходных систем позволяет использовать приспособление этого типа практически в любой системе управления автоматического типа.

    Контроль горелки

    Достаточно распространенными датчиками контроля пламени горелки стали приборы LAE 10, LFE10. Что касается первого прибора, то он применяется в системах, где используется жидкое топливо. Второй датчик более универсален и может применяться не только с жидким топливом, но и с газообразным.

    Чаще всего оба эти устройства применяются в таких системах, как двойная система контроля горелок. Может успешно применяться в системах жидкотопливных воздуходувных газовых горелок.

    Отличительной особенностью данных устройств стало то, что можно устанавливать их в любом положении, а также крепить непосредственно к самой горелке, на пульте управления или же на распределительном щите. При монтаже этих устройств очень важно правильно уложить электрические кабели, чтобы сигнал доходил до приемника без потерь или же искажений. Чтобы этого достичь, нужно укладывать кабели от этой системы отдельно от других электрических линий. Также нужно использовать отдельный кабель для этих датчиков контроля.

    Источник

  • Adblock
    detector