Меню

Сопротивление пожарного датчика при сработке

Норма П.Б.

ОБСУЖДЕНИЕ И РАЗЪЯСНЕНИЕ НОРМ ПОЖАРНОЙ БЕЗОПАСНОСТИ

уроки для монтажников СПЗ. Урок №2.

уроки для монтажников СПЗ. Урок №2.

Доброго времени суток всем постоянным Читателям нашего сайта, Гостям, а также Коллегам по цеху! Мое имя Алексей, авторский псевдоним “servis”. Сегодня мы продолжаем наш курс, содержащий уроки для монтажников систем противопожарной защиты. Напоминаю, что основная задача этих уроков – делиться опытом и наработанными навыками. Делиться это значит я поделился с Вами, а Вы поделились со мной, обмен, понимаете? А совсем не «игра в одни ворота», когда я что-то написал, Вы прочитали и порадовались, все, точка. Проходите в комментарии, устраивайтесь удобнее, пишите свои мысли и идеи. Велком.

Ранее уже публиковался урок №1, вот ссылка на него

На прошлом уроке мы сравнивали как монтировать пожарную сигнализацию по старым и новым нормам, то есть по СП5.13130.2009 и СП484.1311500.2020. Сегодня мы отставим нормы в сторону и поговорим о технике. Мы обсудим, какие шлейфы пожарной сигнализации бывают, в чем особенности каждого типа и так, совсем попроще, объясним как это все работает.

Итак, на этом нашем уроке, начнем с самой простой и понятной пороговой системы пожарной сигнализации. Будем смотреть на примере ППК «Гранит-12», так как еще проще прибор наверное трудно придумать. Вот так прибор выглядит снаружи

На лицевой панели кнопки 12 шлейфов, кнопка блока клавиатуры, отключение звука, сброс тревог…….собственно все. Ну и индикаторы, отмеченные соответствующими событиям рисунком. Не будем углубляться в назначение каждой кнопки – мы здесь не для этого, тем более, кому интересно, скачают паспорт и прочитают про ППК «Гранит» все что им нужно. Когда мы открываем корпус прибора, мы видим следующую картину

Мы видим контактные фишки «Х6 – Х6.5» – это как раз, контакты для подключения шлейфов ПС. Видите как экономно – все 12 шлейфов уместились в 7 пар фишек, так как на каждые 4 шлейфа предусмотрен всего один общий контакт! Очень экономно. Хотя, надо отдать должное – контакт вполне может зажать жилу 6 квадратов, то есть миниатюрность – это не к приборам серии Гранит.

Теперь внимательнее рассмотрим электрическую схему подключений ППК «Гранит-12», для того чтобы понять что такое есть пороговый шлейф на примере, и уяснить для себя все его возможности. Посмотрите на рисунок ниже. Обратите внимание на фишки «ОБЩ и ШС3». Это как Вы поняли, шлейф №3. Он пустой, то есть без подключенных пожарных извещателей, зашунтирован только оконечным резистором, номиналом 7,5 кОм.

Необходимо отметить, что оконечный резистор (может быть и иное устройство, диод, к примеру) есть у любого порогового не адресного прибора. Это следует из самого принципа работы порогового шлейфа. Емкость и напряжение шлейфа уравновешивается некой нагрузкой, номинал которой (в данном случае 7,5 кОм) позволяет шлейфу находиться в состоянии «норма». В других ППК (Сигнал, Нота, Магистр, прочие) могут быть оконечные резисторы иных номиналов. Когда в шлейф ПС включен оконечный резистор, соответствующий модели ППК, шлейф находится в стабильном равновесии, то есть в дежурном режиме. В этом случае, сопротивление шлейфа равняется сопротивлению оконечного резистора и плюс не значительное сопротивление медных проводов шлейфа (допустимо до 100 Ом) – чтобы не путаться, сопротивлением проводов пока не будем мозги забивать, это не так важно. Но шлейф без пожарных извещателей не имеет смысла, по этому мы опять обратимся к схеме, которая теперь располагается выше. Смотрим на шлейф «ШС4». К этому шлейфу подключены тепловые извещатели ИП103 (или105) с нормально замкнутыми контактами. Это значит, что в состоянии «норма» контакты извещателей замкнуты, а в состоянии «пожар» контакты размыкаются. Однако, если контакт просто разомкнется, то получится обрыв шлейфа, то есть, цепь разорвана, ППК, в этом случае, поймет событие, как неисправность – обрыв шлейфа, что конечно нам не нужно, так как сработка извещателя должна сигнализировать о обнаружении возгорания. Именно по этому, контакты каждого пожарного теплового извещателя зашунтированы дополнительным резистором 2,2 кОм. (при реализации логики «И»). По упомянутой схеме все тепловые извещатели включаются в шлейф последовательно. Происходит следующий алгоритм – при сработке, контакты теплового извещателя размыкаются, в цепь вместо «НЗ» контактов ПИ включается резистор, что превышает общее сопротивление шлейфа на 2,2 кОм. Согласно расчета, 7,5 кОм (окон.) + 2,2 кОм (добав.) = 9,7 кОм (общее сопротивление ШС, при сработки одного ПИ). В результате, шлейф переходит в состояние «Внимание», так как общее сопротивление шлейфа превысило порог дежурного режима и достигло порога состояния «Внимание». При сработке второго ПИ, получается 9,7 + 2,2 = 11,9 кОм (общее сопротивление ШС, при сработки двух ПИ). В результате, шлейф переходит в состояние «Пожар», так как общее сопротивление шлейфа превысило порог дежурного режима и достигло порога состояния «Пожар». Мы привели пример сработки на «пожар» по двум пожарным извещателям. По этому же алгоритму можно выполнить сработку по одному извещателю (при реализации логики «ИЛИ»), но в этом случае номинал добавочного резистора должен быть не менее чем двойным (2,2 + 2,2 = 4.4 кОм). Мы рассмотрели выше алгоритм повышения сопротивления шлейфа, при пожаре, выше пороговых дежурных значений. Теперь иной вариант – алгоритм понижения сопротивления шлейфа, при пожаре, ниже пороговых дежурных значений. Смотрим на схему на шлейф ШС11. Дымовые точечные извещатели ИП212-63М включены в шлейф в параллель. Добавочный резистор составляет 1 кОм. Происходит следующий алгоритм – при сработке, контакты дымового извещателя замыкаются, в цепь включается параллельный резистор, что понижает общее сопротивление шлейфа, расчет, в соответствии с законом ОМА, с учетом сопротивления самого извещателя, до примерно, 2 кОм. (общее сопротивление ШС, при сработки одного ПИ). В результате, шлейф переходит в состояние «Внимание», так как общее сопротивление шлейфа принизило порог дежурного режима и достигло порога состояния «Внимание». При сработке второго ПИ, получается примерно 0,7 кОм (общее сопротивление ШС, при сработки двух ПИ). В результате, шлейф переходит в состояние «Пожар», так как общее сопротивление шлейфа принизило порог дежурного режима и достигло порога состояния «Пожар». Значения сопротивлений и состояний шлейфа сведено в таблицу ниже

В таблице «Пожар 1» это то состояние, которое мы называем «Внимание».

Ну вот, мы и разобрали алгоритм работы принципиального порогового шлейфа пожарной сигнализации. В схеме есть еще охранные извещатели, мы их подробно разбирать не будем – не наша тема. Однако, замечу, что принцип один в один тот же, что и в вари антах с пожарными извещателями. Универсальный принцип можно сформировать так – сработка порогового шлейфа происходит либо в случае наличия контакта там, где в дежурном режиме его быть не должно, либо случае отсутствия контакта там, где он должен присутствовать в дежурном режиме. И везде-везде есть в наличии оконечные резисторы. Они могут быть или в виде просто резистора, включенного в контактную панель пятки извещателя, или в виде резистора, включенного в схему УКШ (устройство контроля шлейфа), которое устанавливается на видном месте и сигнализирует светящимся светодиодом о наличии напряжения на конце шлейфа, то есть о работоспособности ШС.

Читайте также:  Датчик абсолютного давления дастер дизель

На этом, статью уроки для монтажников СПЗ. Урок №2.заканчиваю. На следующем уроке мы будем говорить о адресном шлейфе и принципе его работы.

Может быть, кто то хочет спросить что то по второму уроку? Добро пожаловать в комментарии – обсудим. Может кто то имеет иной свой взгляд на перечисленные проблемы монтажа – велком, пишите, мы с удовольствием послушаем.

Читайте другие публикации на сайте, ссылки на которые можно найти на Главной странице сайта,

https://www.norma-pb.ru/p655/ – исходные данные для проектирования систем пожарной безопасности

Ну и под итог, как обычно, для Вас, четверостишье от моего самого любимого поэта и философа XI–XII века – Гияс ад-Дин Абу-ль-Фатх Омар ибн Ибрахим Хайям Нишапури из сборника «Рубаи»

И днем и ночью ты взываешь к небесам,

К далекому Творцу, укрывшемуся там.

Примолкни хоть на миг, ответ Его услышишь:

«Я не вдали, Я здесь, Я – это ты же сам».

Участвуйте в обсуждении в социальных сетях в наших группах по ссылкам:

Источник

В какие пожарные датчики не нужно устанавливать добавочный резистор

Добавочные резистор в пожарный датчик следует устанавливать для различения пожарным прибором сработки по одному или по двум датчикам.

Несмотря на то, что уже давно почти всегда в датчик необходимо устанавливать добавочный резистор — датчики до сих пор не приспособлены для этого.

Но есть приятные исключения.

Добавочный резистор в датчике вместо задуманного повышения надежности приводит к появлению узкого места.

Ведь скорее всего резистор с проводами шлейфа будет просто скручен, а скрутка скомкана в базовом основании.

Точку соединения приходящего и уходящего провода «+» шлейфа пожарной сигнализации с добавочным резистором приходится осуществлять в воздухе.

Нет бы использовать для этого дополнительную клемму базового основания — но единственная дополнительная клема предназначена для подключения выносного устройства.

Пропадание контакта в месте срутки или обламывание резистора приведет к тому, что датчик никогда не сработает, а шлейф останется в норме.

Поэтому каждый раз имеет смысл думать — а не использовать ли датчики, в которых производитель позаботился о подключении добавочного резистора.

Устройство согласования УС-01 для датчиков дыма Рубеж.

Цитата из руководства пользователя датчика ИП 212-141М:

Для удобства подключения извещателя к приборам, имеющим функцию определения количества сработавших извещателей (один или два), применяется добавочный резистор или устройство согласования УС-01, установленное в розетку и содержащее резистор 820 Ом (под заказ – любой) и контактную колодку.
Номиналы добавочных резисторов для подключения к приборам:
– Сигнал-20, Сигнал-20П – 1,6 кОм ± 5%,
– Гранит – 510 Ом ± 5%,
– Гранд Магистр – 750 Ом ± 5%

УС-01 невозможно купить отдельно — они продаются в комплекте с датчиками уже встроенные.

Я не знаю все ли датчики дыма имеют такую опцию, но ИП 212-45, ИП 212-141, ИП 212-141М точно имеют.

Устройство согласования УС-01 встраиваются в базовые основания (розетки), а поскольку типов базового основания у датчиков Рубеж, кажется, два, то можно предположить что любой датчик можно купить в комплекте с УС-01.

Вычисление разницы между датчиком с УС-01 и без позволяет определить что цена УС-01 50р.

ИП 212-45 с УС-01 стоит 374р.

ИП 212-141 с УС-01 стоит 316р.

Интерактивный пожарный датчик ДОКА-с.

ИП 212-02К (ДОКА-с) стоит 345р.

Датчик белорусский, но его можно применять в РФ.

Особенностью этого датчика есть то, что он соответствует пресловутому «приложению Р», по которому можно устанавливать один датчик в помещение.

Специального письма из ВНИИПО об этом у датчика нет, но, благодаря интерактивному режиму, этот датчик соответствует «приложению Р» ничуть не меньше, чем те датчики, у которых эти письма есть.

Найти паспорт датчика, чтобы читать первоисточник, а не рекламу, оказалось невозможно на сайте производителя и удалось только на Тинко.

Номинал внутреннего добавочного резистора задается при помощи джамперов:

Не так просто не понять — какое значение необходимо установить, например, для применения в шлейфе прибора «Сигнал-20М».

Датчик Болид со встроенным добавочным резистором.

ИП 212-31 ДИП-31 стоит 281р.

Дополнительный резистор, соответствующий для пожарных приборов Болид, в этот датчик просто встроен.

Будут конечно проблемы с другими пожарными приборами, для которых необходимо применять добавочный резистор другого номинала.

И если предполагается применять на объекте прибор «Сигнал-20М», то имеет смысл закладывать в проекте именно такие датчики.

Источник

Анализ параметров шлейфа ПС

Принципы работы неадресных приемно-контрольных приборов и основные варианты построения уже обсуждались в отраслевой печати. В основном проводился анализ помехоустойчивости при использовании различных схемотехнических решений. Рассмотрим более подробно электрические характеристики шлейфов двухпороговых ППКП при работе с пожарными извещателями различного типа.

Требования по согласованию неадресных ППКП с неадресными пожарными извещателями изложены в общем виде В ГОСТ Р 53325-2009 «Техника пожарная. Технические средства. Пожарной автоматики. Общие технические требования. Методы испытаний». В п. 4.2.1.1 указано, что «извещатели пожарные, взаимодействующие с прибором приемно-контрольным пожарным, должны обеспечивать информационную и электрическую совместимость с ним». В п. 4.2.1.3 содержится требование: «электрические характеристики извещателей пожарных (напряжение и токи дежурного режима и режима тревожного извещения) должны быть установлены в технической документации (ТД) на извещатели пожарные конкретных типов и должны соответствовать электрическим характеристикам шлейфа пожарной сигнализации пожарного приемно-контрольного прибора, с которым предполагается использовать извещатели пожарные».

В технической документации на приемно-контрольные приборы по п. 7.2.1.5 ГОСТ Р 53325 — 2009 должны быть указаны «диапазоны тока в неадресном шлейфе сигнализации, в том числе максимальный ток питания извещателей, при котором ППКП регистрирует все предусмотренные виды извещений и диапазон питающих напряжений». Как правило, в документации на ППКП приводится максимально допустимый ток потребления активных извещателей, уровень ограничения тока шлейфа в режиме «Пожар», достаточно часто — диапазон сопротивлений шлейфа, соответствующий различным режимам, но значения напряжений и токов шлейфа обычно не указываются, что затрудняет оценку совместимости конкретного типа извещателей и ППКП. Причем в настоящее время по экономическим причинам используются практически исключительно только так называемые двухпороговые ППКП с идентификацией сработки 1-го и 2-го извещателя, что и определило появление проблемы согласования извещателей с ППКП [1].


Методы контроля состояния пожарных шлейфов

Различные варианты построения пожарных приемно-контрольных приборов с точки зрения обеспечения надежности подробно рассмотрены в статье В. Баканова [2]. В статье А. Пинаева и М. Никольского [3] существующие методы контроля состояния неадресных шлейфов сведены двум типам:

  • контроль по напряжению шлейфа;
  • контроль по току шлейфа.
Читайте также:  Не работает датчик движения для света постоянно горит свет

Упрощенная структура шлейфа может быть представлена в виде источника напряжения UХХ, порядка 12 — 24 В, токоизмерительного резистора RППКП, значение которого для различных приборов может изменяться в широких пределах: от сотни Ом до нескольких кОм и устройства обработки информации с установленными порогами, соответствующими границам режимов шлейфа (рис. 1). В этом плане ППКП можно разделить на приборы с высокоомным выходом шлейфа, где токоизмерительный резистор одновременно выполняет роль токоограничивающего резистора, обеспечивающего ток короткого замыкания шлейфа на уровне порядка 20 мА, и с низкоомным выходом, порядка 100 Ом, где для ограничения тока шлейфа используется дополнительная схема. Значение напряжения UХХ соответствует напряжению шлейфа без нагрузки, т.е. в режиме холостого хода. Для контроля обрыва шлейфа устанавливается оконечный резистор RОК, обычно в пределах от 3,3 до 9,1 кОм, в зависимости от типа ППКП. Состояние шлейфа ППКП может определяться по току шлейфа, посредством измерения напряжения на токоизмерительном резисторе. По каким-то причинам в документации на ППКП обычно указывается только сопротивление шлейфа в различных режимах. В общем случае сопротивление шлейфа RШС пропорционально отношению напряжения шлейфа к напряжению на токоизмерительном резисторе: RШС = RППКПUШС / URППКП. А так как обычно используется стабилизированный источник, то сумма напряжений UШС + URППКП постоянна и равна напряжению UХХ и режим шлейфа определяется по любой из этих величин.

Рис. 1. ППКП контролирует ток шлейфа по напряжению на резисторе

Рассмотрим несколько примеров пожарных шлейфов при различных значениях напряжения UХХ, токоизмерительного резистора RППКП и оконечного резистора RОК. Определим примерные пороги по току, по напряжению и, исходя из условия однозначно определения режима шлейфа в соответствии с требованиями п. 7.2.1.5 ГОСТ Р 53325 — 2009, оценим допустимые токи потребления активных извещателей в дежурном режиме.

Рис. 2. Комбинированный шлейф с двойной сработкой на замыкание и на размыкание

Комбинированный шлейф, т.е. включены извещатели с нормально разомкнутыми контактами и с нормально замкнутыми контактами, при этом определяется сработка 1-го и 2-го извещателя на замыкание и на размыкание (рис. 2). Этот тип шлейфа имеет максимальное число режимов 7:

  • обрыв шлейфа;
  • сработка двух извещателей на размыкание – «Пожар 2»;
  • сработка одного извещателя на размыкание – «Пожар 1»;
  • дежурный режим;
  • сработка одного извещателя на замыкание – «Пожар 1»;
  • сработка двух извещателей на замыкание – «Пожар 2»;
  • короткое замыкание шлейфа,
    и соответственно 6 порогов.

В качестве исходных характеристик зададим типовые параметры: напряжение разомкнутого шлейфа UХХ равным 20 В, токоограничивающий резистор шлейфа RППКП возьмем 1 кОм, чтобы обеспечить ограничение тока короткого замыкания на уровне 20 мА, оконечный резистор RОК 7,5 кОм ± 5%, максимальное сопротивление кабеля шлейфа RКАБ 220 Ом и минимальное сопротивление утечки RУТ между проводами шлейфа 50 кОм. Тогда номинальный ток шлейфа в дежурном режиме составит Iдеж = UХХ /( RППКП + RОК) = 20 В / (1+7,5) кОм = 2,35 мА. Определим максимальный разброс параметров шлейфа, т.е. при минимальном значении оконечного резистора RОК — 5% будем учитывать сопротивление утечки шлейфа 50 кОм, а при максимальном значении RОК + 5% будем учитывать сопротивления кабеля 220 Ом. С учетом этих допущений сопротивление шлейфа может изменяться в пределах 6,24 кОм ? 8,1 кОм, соответственно ток дежурного режима может быть в диапазоне от 2,2 мА до 2,76 мА. Таким образом, разброс тока дежурного режима превышает 0,5 мА! Соответственно напряжение шлейфа в дежурном режиме на выходе ППКП может быть в пределах 17,24 В ?17,8 В.

Извещатели с нормально разомкнутыми контактами включаем в шлейф с дополнительными резисторами RДОП = 1,6 кОм ±5%, извещатели с нормально замкнутыми контактами с балластными резисторами RБАЛ = 4,7 кОм ±5% (рис. 2). Параметры шлейфа для минимального, номинального и максимального сопротивления шлейфа для различных режимов приведены в Таблице 1.

Обычно в документации на ППКП приводятся границы сопротивления шлейфа, соответствующие различным режимам, однако рассмотрение соответствующих им токов и напряжений дает дополнительную информацию, позволяет оценить помехоустойчивость и определить максимально допустимый ток потребления извещателей в дежурном режиме. Данные таблицы 1 показывают, что области сработки одного и двух извещателей на размыкание пересекаются, при сопротивлении утечки между проводами шлейфа 50 кОм и при сработке двух извещателей ток шлейфа будет соответствовать номинальному току при сработке одного извещателя. Т.е. прибор не сможет идентифицировать сработку второго извещателя! Кроме того, необходимо отметить, что даже номинальные токи и напряжения шлейфа, без учета кабеля, различаются незначительно при сработке извещателей на размыкание. При сработке первого извещателя ток шлейфа снижается на 0,83 мА, а при сработке второго извещателя всего лишь на 0,4 мА.

Теперь определим допустимый ток потребления извещателей в дежурном режиме. Александр Зайцев предложил ввести термин, который ясно определяет возникающую проблему: «ток обрыва шлейфа». Действительно, в соответствии с требованиями ГОСТ Р 53325 — 2009 п. 7.2.1.1 «ППКП должны обеспечивать…
автоматический контроль целостности линий связи с внешними устройствами (ИП и другими техническими средствами), световую и звуковую сигнализацию о возникшей неисправности». В общем случае обрыв шлейфа идентифицируется по снижению тока шлейфа при отключении оконечного резистора. При этом необходимо учитывать ток потребления пожарных извещателей и сопротивление утечки между проводами шлейфа. Какой ток потребления извещателей желательно обеспечить? Если одним шлейфом защищается до 10 помещений, по 3 извещателя в помещении, при токе дежурного режима извещателя порядке 0,1 мА необходимо обеспечить ток 3 мА. Однако в соответствии с данными Табл. 1, если обрыв шлейфа произойдет в конце шлейфа и величина тока составит 2 — 3 мА, ППКП останется в дежурном режиме и не обнаружит неисправность. Если при обрыве шлейфа отключится примерно половина извещателей, а оставшаяся часть извещателей будет потреблять примерно 1,5 мА, прибор выдаст сигнал «Пожар 1», т.к. эта величина тока шлейфа соответствует сработке одного извещателя на размыкание (рис. 3). Соответственно, если обрыв шлейфа определит ток извещателей порядка 1,2 мА, то прибор выдаст сигнал «Пожар 2»! Какой же «ток обрыва» в рассматриваемом случае? Естественно он должен быть меньше тока шлейфа, соответствующего формированию сигнала «Пожар 2» при активизации двух извещателей с нормально замкнутыми контактами. Исходя из данных, приведенных в таблице 1, можем определить «ток обрыва шлейфа», при котором будет формироваться сигнал «Неисправность» меньше 1 мА, а с учетом тока утечки шлейфа, который может достигать 0,4 мА, максимально допустимый ток потребления извещателей должен быть снижен примерно до 0,5 мА.

Рис. 3. Режимы комбинированного шлейфа

Но при наличии в шлейфе извещателей на размыкание в нашем случае подключение извещателей с током потребления 0,5 мА тоже не допустимо. Номинальный ток шлейфа в режиме «Пожар 2», соответствующий сработке двух извещателей с нормально замкнутыми контактами равный 1,12 мА увеличится до 1,62 мА, что соответствует режиму «Пожар 1». Т.е. прибор в принципе не допускает одновременного включения в шлейф нормально замкнутых извещателей и токопотребляющих извещателей.

Читайте также:  Датчик положения распредвала solano

Для устранения явных недостатков шлейфа, приведенного в Примере 1, на практике в ППКП используют два или три типа шлейфа: шлейф только с нормально замкнутыми извещателями (рис. 4) и шлейф только с нормально разомкнутыми извещателями (рис. 5) с определением сработки двух извещателей, иногда еще допускается комбинированный шлейф с различным типами извещателей, но с определением сработки только одного извещателя и с минимальным током извещателей в дежурном режиме. В этом случае для шлейфа активными извещателями, при тех же исходных параметрах ППКП, «ток обрыва» не должен попадать в область, отведенную для тока дежурного режима, и с учетом тока утечки максимальный ток потребления активных извещателей мог бы быть увеличен примерно до 1,5 мА. Однако граница между режимами «Пожар 1» и «Пожар 2» составляет всего лишь 1 мА и чтобы при сработке одного извещателя формировался сигнал «Пожар 1», а не «Пожар 2», ток извещателей должен быть соответственно менее 1 мА.

Рис. 4. Шлейф с нормально замкнутыми извещателями

Рис. 5. Шлейф с нормально разомкнутыми извещателями

В комбинированном шлейфе обычно выбирается примерно двойная величина балластного сопротивления, например, Rбал=10 кОм, и в два раза меньшее дополнительное сопротивление, соответственно увеличивается дельта между током дежурного режима и режима «Пожар» при сработке нормально замкнутого извещателя (Табл. 2), однако «ток обрыва» остается тем же, что и в Примере 1, следовательно, ток активных извещателей так же должен быть менее 0,5 мА.

Иногда встречается рекомендация компенсировать ток потребления активных извещателей путем увеличения оконечного резистора. Очевидно в комбинированном шлейфе, при токе шлейфа в режиме пожар от извещателя на размыкание порядка 1 мА ни о каких компенсациях речи быть не может. В шлейфе с дымовыми извещателями компенсация повышения тока большого числа извещателей за счет снижения тока оконечного резистора позволяет «уложиться» в пороги дежурного режима и режимов «Пожар 1», «Пожар 2», но если при этом возникает превышение «тока обрыва», прибор не обнаружит обрыв шлейфа.

Изменим параметры шлейфа, для повышения тока дежурного режима увеличим максимальное напряжение шлейфа UХХ до 26 В, оконечный резистор зададим 3,9 кОм±5%, а токоограничивающий резистор шлейфа RППКП возьмем 1,2 кОм. При этом номинальный ток шлейфа в дежурном режиме увеличится до 5,1 мА. Ток короткого замыкания шлейфа будет менее 22 мА, что обеспечивает возможность подключения извещателей без токоограничивающих резисторов. Для формирования сигналов «Пожар 1, 2» извещатели с нормально разомкнутыми контактами включаем в шлейф с дополнительными резисторами 2,7 кОм±5%, извещатели с нормально замкнутыми контактами с балластными резисторами 2,2 кОм±5%. Максимальное сопротивление кабеля шлейфа и минимальное сопротивление утечки оставим те же, что и в первых двух примерах RКАБ = 220 Ом, RУТ = 50 кОм. Результаты расчетов приведены в таблице 3.

Снижение примерно в 2 раза номинала оконечного резистора определило значительно меньшее влияние на величину сопротивление шлейфа параллельного подключения сопротивления утечки кабеля, но соответственно увеличилось влияние последовательно включенного сопротивления кабеля. Определим» ток обрыва шлейфа» для этого случая. Минимальный ток дежурного режима равен 4,71 мА вроде бы позволяет предположить больший ток потребления извещателей, по сравнению с рассмотренными ранее примерами, однако здесь появляется другое ограничение. Максимальный ток дежурного режима без учета тока потребления активных извещателей может достигать 5,59 мА, а минимальный ток шлейфа при сработке первого извещателя 6, 91 мА. Следовательно, чтобы не возникали ложные сигналы «Пожар 1» в дежурном режиме, максимальный ток извещателей должен быть менее 1 мА. С другой стороны здесь необходимо отметить, что максимальный ток шлейфа в режиме «Пожар 1» равен 9,73 мА, а минимальный ток шлейфа в режиме «Пожар 2» равен 8,8 мА (Табл. 3), т.е. в данном примере возможно формирование ложного сигнала «Пожар 2» при сработке одного извещателя, либо при сработке второго извещателя прибор может оставаться в режиме «Пожар 1». Области режимов «Пожар 1» и «Пожар 2» пересекаются, что не позволяет корректно выбрать пороги даже при отсутствии токопотребляющих извещателей (рис. 6). Для шлейфа с нормально замкнутыми извещателями области режимов «Пожар 1» и «Пожар 2» хотя и не пересекаются, но их границы практически совпадают.

Кроме того, при оценке стабильности работы прибора следует так же учитывать нестабильность параметров приборов, температурные уходы порогов, дрейф в процессе старения и т.д. Очевидно сложность построения двухпороговых приборов определила разработку ППКП с адаптивными порогами, что позволяет в какой то мере учесть исходные параметры каждого шлейфа. Однако возможности автокомпенсации ограничены и не все можно скомпенсировать, например, разброс номиналов резисторов RДОП и RБАЛ у каждого извещателя, сопротивление кабеля и сопротивление утечки кабеля имеют распределенный характер и их влияние зависит от расположения извещателя в шлейфе. В наилучшем случае можно обеспечить номинальные параметры шлейфа, которые приведены в таблицах 1 — 3.

В заключение еще раз необходимо отметить, что в документации на ППКП обычно приводятся только диапазоны сопротивления шлейфа для различных режимов, несмотря на то, что в п. 7.2.1.5 ГОСТ Р 53325-2009 указано, что «ППКП должны иметь следующие показатели назначения, численные значения которых приводятся в технической документации (ТД) на ППКП конкретного типа:

— диапазоны тока в неадресном шлейфе сигнализации, в том числе максимальный ток питания извещателей, при котором ППКП регистрирует все предусмотренные виды извещений». Отсутствие в документации информации о режимах ППКП в зависимости от тока шлейфа не позволяет корректно определить допустимый ток извещателей в дежурном режиме и оценить совместимость прибора с пожарными извещателями различного типа, особенно с дымовыми пожарными извещателями с нелинейной вольт-амперной характеристикой, но это тема отдельной статьи.

На практике для проверки обеспечения «тока обрыва шлейфа» можно рекомендовать достаточно простой способ: отключить последний пожарный извещатель, в базе которого установлен оконечный резистор, и проконтролировать формирование сигнала «Неисправность» на ППКП. Если сигнал «Неисправность» отсутствует или формируется сигнал «Пожар», значит ток дежурного режима извещателей превышает «ток обрыва шлейфа». В этом случае необходимо по одному отключать извещатели до появления сигнала «Неисправность». После этого отключить еще несколько извещателей для обеспечения технологического запаса, а базы снятых извещателей подключить к дополнительному шлейфу или к дополнительным шлейфам, если количество снятых извещателей больше, чем число оставшихся извещателей.

1. Неплохов И. Классификация неадресных шлейфов, или Почему за рубежом нет двухпороговых приборов// «Алгоритм безопасности», № 3, 2008.
2. Баканов В. Ключ к системам пожарной сигнализации высокой надежности// SECURITY.UA, №2, 2010.
3. Пинаев А., Никольский М. Оценка качества и надежности неадресных приборов пожарной сигнализации // «Алгоритм безопасности», № 6, 2007.

Опубликовано в журнале Алгоритм безопасности № 5 2010
И. Неплохов, к.т.н., технический директор Бизнес группы «Центр-СБ»

Источник

Adblock
detector