Меню

Типы волоконно оптических датчиков

Волоконно-оптические датчики: принцип работы, виды, эксплуатация

Волоконно-оптические датчики (ВОД) – это приборы, предназначенные для фиксации изменения рабочих показателей системы и трансляции сигнала по оптоволоконному каналу. Такие датчики могут использоваться для отслеживания температуры и механического напряжения, также их применяют для контроля давления, вибрации и других показателей. Их применяют в строительной отрасли, коммунальном хозяйстве, горнодобывающей промышленности и т. д.

Принцип работы

В основе работы датчиков такого типа лежит оптическое волокно. Оно представляет собой сердцевину в полимерной оболочке, по которой проходит световой поток. Сердцевина изготавливается из стекла или пластика, который снабжается специальными добавками для улучшения коэффициента преломления световых волн.

https://techtrends.ru/catalog/optovolokonnye-datchiki//» target=»_blank»>Волоконно-оптические датчики используют оптоволокно в качестве линии передачи сигнала или чувствительного элемента. Наибольшую востребованность приобрели датчики с оптическим преобразователем. Такая система состоит из чувствительного оптического элемента, приемника и излучателя. Преобразователь помещается между торцевыми частями принимающего и передающего волокна, а роль излучателя может выполнять светодиод. В роли детектора света выступает p-i-n-фотодиод.

Датчики с оптическим зондом могут использовать одномодовые или многомодовые оптоволоконные кабели, а источником света в них становятся светодиод или лазерный излучатель. Такие датчики чаще всего применяются для измерений бесконтактного типа и отличаются наиболее высокой точностью.

Виды и характеристики

Общий принцип работы всех категорий таких устройств: световое излучение перемещается по оптоволокну, при этом его параметры меняются в брэгговских решетках. На основании полученных изменений система детектирования делает выводы об изменении рабочих показателей.

Оптоволоконные датчики могут работать по одному из двух принципов:

  1. Точечные – в качестве базового элемента в них используются селектирующие зеркала. Световое излучение исходит от широкополосного источника и отражается в виде узкой полосы. Оставшаяся часть светового потока передается по оптоволокну. Этот вариант передачи сигнала позволяет одновременно использовать несколько контроллеров в автоматизированной линии и обеспечивает наиболее точную передачу сигнала. Датчики такого типа могут использоваться для контроля давления, температуры, вибрации и других показателей.
  2. Распределенные – датчики этого типа применяются для контроля уровня температуры. Опросное устройство провоцирует импульс лазера, и он рассеивается при передаче через оптоволокно. В результате можно определить, какова температура в каждой из точек оптоволоконного канала.

По аналогичному принципу могут работать акустические датчики. В этом случае анализатор фиксирует колебания излучения, передаваемого по оптоволоконному каналу. Это дает возможность зафиксировать звук и определить его источник. Датчики такого типа могут применяться, например, в системах контроля доступа – они дают возможность выявить несанкционированное проникновение.

Если датчик использует оптоволокно для трансляции сигнала на расстоянии, то оно должно быть многомодовым. Одномодовое оптоволокно применяется для устройств, в которых оно выполняет функции сенсора.

Где используются волоконно-оптические датчики

Наиболее широкое распространение получили оптоволоконные датчики, работающие с использованием брэгговских решеток. Они могут использоваться даже в агрессивных средах, где приборы постоянно подвергаются агрессивному внешнему воздействию.

Можно перечислить целый ряд отраслей, в которых применяются оптоволоконные датчики:

  • горнодобывающая промышленность – такие устройства используются в пожарных извещателях для мониторинга состояния шахтных стволов и конвейерных лент;
  • нефтегазовая сфера отрасли – приборы применяются при термомониторинге скважин и трубопроводных линий, дают возможность мгновенно отслеживать даже небольшие изменения температуры;
  • строительство – датчики широко востребованы в системе «умных домов», они позволяют отслеживать различные показатели для автоматического реагирования систем жизнеобеспечения. Также они применяются для постоянного мониторинга мостов, теплотрасс, инженерных систем;
  • авиационно-космическая отрасль – новые технологии позволили создать высокоточные датчики, фиксирующие незначительные деформации корпусов, а также отклонения от температурного уровня;
  • электроэнергетика – датчики могут использоваться для мониторинга силовых линий.

Плюсы и минусы

По сравнению с другими типами измерительных датчиков, оптоволоконные обладают несколькими преимуществами:

  • для их использования не требуются электрические кабели, а в производстве используются непроводящие материалы. Это позволяет использовать приборы в местах с повышенным напряжением, где нельзя использовать другие категории датчиков;
  • при эксплуатации невозможно образование электрической искры, так что можно применять оптоволоконные датчики в шахтах и на пожароопасных участках;
  • такие датчики обеспечивают высокую точность реагирования, даже если они установлены в местах, где существует высокая вероятность удара молнии. Сами по себе они не электризуют среду и никак не влияют на ее рабочие параметры;
  • материалы, из которых состоят датчики, не реагируют на воздействие агрессивных веществ и не подвержены коррозии;
  • диапазон допустимых рабочих температур значительно шире, чем у других категорий датчиков;
  • возможность мультиплексирования – подключения нескольких оптоволоконных датчиков к одному источнику.

Все эти преимущества сделали их универсальным решением для контроля рабочих параметров автоматизированных систем. Они могут использоваться практически в любой среде, им не страшны различные негативные внешние воздействия. Они не дают искажения показаний даже при использовании в экстремальных условиях.

К минусам можно отнести лишь относительно высокую стоимость и ограниченные возможности применения.

  1. Любая информация, переданная Сторонами друг другу при пользовании ресурсами Сайта (http://www.techtrends.ru), является конфиденциальной информацией.
  2. Пользователь дает разрешение Администрации Сайта на сбор, обработку и хранение своих личных персональных данных, а также на рассылку текстовой и графической информации рекламного характера.
  3. Стороны обязуются соблюдать данное соглашение, регламентирующее правоотношения связанные с установлением, изменением и прекращением режима конфиденциальности в отношении личной информации Сторон и не разглашать конфиденциальную информацию третьим лицам.
  4. Администрация Сайта собирает два вида информации о Пользователе:

— персональную информацию, которую Пользователь сознательно раскрыл Администрации Сайта в целях пользования ресурсами Сайта;
— техническую информацию, автоматически собираемую программным обеспечением Сайта во время его посещения.

Читайте также:  Как проверить датчик холла мультиметром ауди 80 б3

Источник

Особенности волоконно-оптических датчиков и где их можно применять

Оптически-волоконные детекторы представляют собой устройства, используемые во многих сферах промышленности для определения концентрации веществ, скорости вращения, показателя преломления, механического напряжения, давления, уровня жидкости, температуры, вибрации, ускорения, положения в пространстве. Оптически волоконный тип датчиков приобретает все большее распространение для фиксации изменения параметров в ходе технологических процессов благодаря стабильности в течении продолжительного периода времени, устойчивости к помехам, имеющим электромагнитную природу, возможности бесконтактного измерения и другим преимуществам.

Основу для измерения величины, на которую в ходе определенных воздействий изменяются перечисленные величины, используется изучение показателей отраженного пучка света, пропускаемого через оптическое волокно.

История появления

Развитие технологий предусматривает разработку автоматизированных систем управления и контроля, внедрение сенсорных элементов, позволяющих с высокой точностью контактным или бесконтактным способом определять изменение физических величин. Среди других требований к перспективным конструкциям современных метрологических устройств, специалисты называют:

  • долговечность;
  • небольшие затраты энергии на работу;
  • возможность применения совместно с микроэлектронными устройствами для обработки данных;
  • стабильность;
  • небольшие габариты;
  • малый вес;
  • высокая достоверность получаемой информации;
  • малая трудоемкость изготовления;
  • небольшая стоимость.

Специалисты утверждают, что приобретающие все большую популярность детекторы из оптоволокна соответствуют приведенному списку по большинству пунктов. Оптическая электроника находится на стыке электроники и оптики, принцип ее работы основан на возможности использования в радиотехнике волн оптического диапазона. Возможность синтеза электронного и оптического устройства была обоснована Лоебнером в 1955 г, когда ученый описал основные параметры таких приспособлений, называя их оптронами.

Следующей важной вехой в развитии технологии было создание волокон оптического типа, основанного на успешном опыте получения фирмой Корнинг (США) волокон с небольшим показателем затухания, не превышающим 20 дБ/км. Первые работоспособные прототипы датчиков были разработаны во второй половине 70-х годов прошлого века. Следующие 10 лет после этого (1972-1982 гг) усилия исследователей были направлены на снижение потерь при передаче для оптических волокон различных видов.

Таким образом, изначально предназначенная для обеспечения связи, оптоволоконная отрасль развилась до выпуска приборов, основанных на изучении параметров электромагнитных волн, проходящих через световод и производства высокоточных датчиков.

Общий принцип действия оптоволоконных датчиков

Принцип работы волоконно-оптических датчиков основан на преобразовании сигнала, полученного от чувствительного элемента в результате внешних изменений в показатели рассеянного или отраженного излучения. Специалисты в этой области электроники говорят о том, что в качестве выходного параметра в различных типах детекторов может измеряться:

  • Распределение параметров состава излучения по спектру или моде.
  • Фаза электромагнитной волны.
  • Показатели поляризации.
  • Интенсивность оптической волны.

Одним из основных элементов, позволяющих передавать сигнал об изменении свойств или состояния объекта, являются оптические модуляторы.

Важно! При воздействии управляющего сигнала на твердотельные устройства, предназначенные для модулирования электромагнитной волны, за счет изменения параметров материала происходит колебание оптических характеристик используемого вещества.

Общий принцип действия оптоволоконных детекторов состоит в том, что электромагнитная волна, генерируемая супер-люминесцентным оптическим источником или лазером, передается через волокно. При этом вследствие действия внешних факторов наблюдаются изменения в решетках Брэгга или незначительное колебания параметров волокна, которые достигают модуля детектирования, где происходит прием сигнала, его усиление и оценка.

Обратите внимание! Сам по себе прибор представляет собой устройство, имеющее небольшие размеры, характерной особенностью которого является то, что волокно выступает в качестве сенсора, способного определять параметры изменения величин и в качестве линии передачи сигнала.

Разновидности

Управляющий сигнал связан со свойствами материала посредством магнитооптических, акустооптических или электрооптических характеристик. По особенностям строения и принципу действия, специалисты различают такие виды детекторов, как:

  • волоконно-оптическая разновидность, отличающаяся тем, что в нем в качестве сенсора выступает волокно, оптические характеристики которого изменяются под воздействием факторов внешней среды;
  • элементы с оптически-волоконными связями, в которых сенсор располагается на участке разрыва волокна, в результате чего может воздействовать на светопередачу;
  • интегрально-оптические датчики, использующие в качестве чувствительного элемента световод планарного типа, принцип действия которого базируется на нарушении полного внутреннего отражения для лучей, проходящих вдоль его поверхности и выходящих за нее в результате изменения показателей преломления;
  • оптопары, имеющие открытый канал, в котором располагается промежуточный элемент или изучаемая среда.

Деформации

1 группа

Специалисты в области автоматики разделяют детекторы этой группы на:

  • Датчики деформации, действие которых основывается на изменении параметров дифракционной решетки Брэгга, нанесенных на поверхность волокна. В процессе прохождения через волоконно-оптическую линию излучение воспринимает решетку, как зеркало, показатели отражения которого зависят от ее периода.

Обратите внимание! При изменении параметров тела, связанного с кабелем происходит растяжение или сжатие решеток, в результате чего изменяется показатель их отражения, что фиксирует регистрирующая аппаратура.

2 группа

  • Вторая конструкция основана на принципе действия интерферометра Фабри-Перро. Одна сторона кабеля прозрачна и способна пропускать излучение, а другая – полностью отражает его.

Важно! Электромагнитная волна, отраженная от обеих поверхностей поступает на приемник сигнала, где происходит интерференция, анализ картины которой позволяет с высокой точностью определить изменение линейных деформаций волокна.

К числу преимуществ таких конструкций специалисты относят отсутствие чувствительности к электромагнитному излучению, продолжительный срок эксплуатации, большое количество возможных геометрических форм и высокую точность измерения. Среди недостатков чаще всего называется сложность конструкции оптически-электронных составляющих и достаточно высокую стоимость устройства.

Читайте также:  Схема расположения датчиков ваз 2110 8 клапанов инжектор

Перемещения

Одной из простейших конструкций, основанных на изменении интенсивности, является детектор перемещения. Принцип его работы состоит в том, что свет, поступающий в передающий кабель приемного и осветительного световодов, отражается зеркальной поверхностью, выступающей в этом типе датчика в качестве модулирующего элемента. Зеркало крепится на оптической планке, позволяющей совершать его перемещения с очень малым (0,005 мм) шагом. После отражения от зеркала, сигнал по приемным волокнам кабеля поступает на фотодиод, откуда сигнал направляется на регистрирующую аппаратуру.

Температуры

Определение температуры при помощи волоконно-оптического датчика основано на вибрациях молекулярной решетки, возникающих при прохождении света через область взаимодействия фотонов и электронов. При воздействии на кабель силы натяжения, давления, температуры наблюдается локальное изменение параметров сигнала обратной связи. Измерительные системы, основанные на использовании регистраторов из оптоволокна, применяют сопоставление интенсивности и спектра исходного и обратного рассеянного излучения, после его прохождения по волокну.

Давления

В промышленности измерение давления при помощи оптоволоконных кабелей проводится по оценке интенсивности излучения. Сенсором выступает элемент для измерения давления, в котором дифракционная решетка, локализующаяся между принимающими и передающими волокнами, присоединена к мембране.

Показатели давления определяют на базе оценки количества излучения, попадающего в выходные волокна после отражения от поверхности мембраны. Этот показатель зависит от действующего давления, поскольку в зависимости от его величины меняется расстояние между концом жгута и поверхностью мембраны. Детектор для определения нагрузки, действующей на поверхность, оборудован устройствами температурной компенсации, в процессе измерения он размещается между двумя контактирующими поверхностями.

Угла наклона

Детекторы, обеспечивающие измерение угла наклона в зависимости от положения объекта оснащены системой самокалибровки и устройствами компенсации влияния температуры на результат. Такие конструкции могут использоваться для непрерывного определения угла наклона строительных сооружений и промышленных объектов. Полученные сигналы от детекторов углов наклона передаются на универсальный регистрирующий оптоволоконный модуль.

Среди достоинств конструкций этого типа специалисты называют наличие прочного корпуса из металла, позволяющего выполнять наружный монтаж устройства, быстродействие, высокую точность передаваемой информации, защищенность от действия помех, пожаро- и взрывобезопасность.

Ускорения и вибрации

Волоконно-оптические датчики для определения вибраций, передаваемых узлами агрегатов или строительными конструкциями, нашел широкое применение при выполнении стендовых и лабораторных исследований. Эта разновидность метрологических конструкций представляет собой сенсорный элемент, установленный в металлическом корпусе и соединённый с трансивером оптико-электронного типа при помощи кабеля, на конце которого располагается угловой соединитель.

Среди преимуществ этого устройства специалисты называют продолжительный срок службы, возможность измерения с высокой точностью, даже в условиях повышенных температур, наличие возможности удаленного измерения параметров объекта

Акустический

Акустические устройства распределенного типа за счет отправления сигнала в кабель и последующего отслеживания отражений, рассеиваемых от него по длине волокна, позволяют измерять параметры акустического поля на длине до 50 км. После оценки времени между отправлением импульса и получением рассеянного отражения и анализа параметров получаемой ответной информации можно оценить величину акустического сигнала на всей длине протяженности кабеля.

Применение в экстремальных условиях

Условия внешней или контролируемой среды, в которых один или несколько действующих параметров, например агрессивность, концентрация, радиационная доза имеют предельно возможные значения в течение продолжительного периода времени, называются экстремальными.

Именно в таких условиях чаще всего работают первичные преобразователи выходных величин, получаемых при управлении такими технологическими процессами, как хранение отходов радиоактивного топлива, диагностика и мониторинг инженерных сооружений, имеющих сложную конструкцию, системы добычи, транспортировки и переработки газа, нефти.

Классические тензорезисторы и звенья не могут работать в подобных условиях, учитывая их чувствительность к излучениям электромагнитных волн в диапазоне измерения, ограничения работы в узком температурном диапазоне, невозможность использования в условиях повышенного радиационного фона и т.д.

Радиация

Отсутствие электроснабжения в месте локализации датчика не является помехой для его обеспечения удаленного мониторинга состояния атомных станций в случае повышенного радиационного фона или при возникновении нештатных ситуаций. Используемые в них сенсоры являются стойкими к действию радиации, а электронно-оптические преобразователи могут располагаться от них на расстоянии до 500 км от источника загрязнения.

Работоспособность датчиков в таких условиях позволяет обеспечить контроль над АЭС при возникновении форс мажорных обстоятельств и обеспечить принятие правильных решений по предотвращению расширения области локализации радиации.

Температура

Проблема обеспечения и контроля герметичности емкостей, содержащих жидкий водород, имеющий высокую текучесть и температуру на уровне –253 °С, обусловлена хрупкостью значительного количества материалов в таких условиях и снижением чувствительности датчиков палладиевого типа.

Чувствительные элементы современных детекторов из оптоволокна обладают хорошими показателями холодостойкости (до –270 °С) и высокой теплостойкостью (до +2300 °С), что позволяет обеспечить контроль технического состояния объектов, работающих в области как сверхнизких, так и сверхвысоких температур.

Последнее качество особенно важно при обеспечении измерения сухости перегретого пара в генераторах газа и давления в соплах реактивных двигателей, имеющих температуру до +600 °С, поскольку наиболее подходящие для этих измерений пьезоэлектрические детекторы не могут обеспечить нормальную работу при температуре выше +300 °С.

Электромагнитные помехи

Измерения колебаний физических величин представляет проблему, в случае работы электронного датчика в условиях электромагнитных помех. Среди наиболее часто встречающихся препятствий для нормальной работы устройств, специалисты называют измерение токов и напряжений, имеющих большие величины, наводки на кабели для передачи электричества коаксиального типа, чувствительность аппаратуры к грозовым разрядам, выполнение контроля пульса пациента на специальной медицинской установке.

Читайте также:  Не срабатывает уличный датчик движения

Чувствительные элементы детекторов волоконно-оптического типа относятся к классу изоляторов и характеризуются отсутствием чувствительности к наводкам и электромагнитным помехам. Эти свойства позволяют с высокой степенью достоверности (класс точности 02s) определять значения токов, величиной до 200 кА и напряжений, величина которых достигает 800 кВ.

Агрессивные средства

Трудностью для детекторов электрического типа является и измерение величин агрессивных химических веществ, продолжительные измерения деформации сооружений и объектов, находящихся под действием динамической нагрузки. Некоторые сложности вызывает и измерения, в которых имеется множество точек контроля, поскольку в этой ситуации наблюдается увеличение объема электрических кабелей до неприемлемых величин.

Чувствительные элементы датчиков из оптоволокна за счет наличия большого количества сенсоров могут выполнять одновременно функции по замеру различных физических величин, например температуры и деформации и т.д. Кабели, имеющие большое количество оптических волокон, способны выполнять измерения температурных полей при помощи тепловизоров и пирометров, а дистанционные замеры при помощи видеокамер скважинного типа.

Метрологическая калибровка

Одной из существенных проблем электромагнитных датчиков, вмонтированных внутрь объектов, например опорные конструкции или стены высоток, бетонные сооружения мостов и гидротехнических плотин является сложность выполнения поверки их показаний и калибровки устройств. Волоконно-оптические детекторы, учитывая их мультимодальность, отличаются встроенной функцией самоконтроля точности метрологических показателей, за которым следует подстройка под заданные параметры без использования эталонов для поверки и остановки технологических процессов.

Сферы применения

Развитие технологии производства волоконно-оптических детекторов позволило не только снизить стоимость этих устройств, но и решить ряд проблем, связанных с невозможностью использования обычных средств тензометрии для определения изменения физических величин в нетипичных условиях. Современные конструкции оптоволоконных детекторов применяются:

  • в системах безопасности и оповещения;
  • для контроля работы плавильных печей;
  • для обнаружения утечек на гидротехнических сооружениях;
  • контроль значений температуры во время различных технологических процессов;
  • в системах оповещения о пожарной тревоге;
  • с целью повышения эффективности использования газовых и нефтяных скважин;
  • для контроля герметичности емкостей для хранения сжиженного природного газа в терминалах и на судах;
  • при обнаружении протекания в трубопроводах и контроля уровня жидкости.

В дальнейшем специалисты прогнозируют развитие технологии таким образом, что закладываемые при строительстве новых сооружений оптико-волоконные системы смогут обеспечивать контроль и поддержание в необходимом диапазоне всех эксплуатационных параметров каждого объекта. Подобный подход может решить проблему моментального оповещения о происшествии и координации вызова экстренных служб.

Нефтедобыча

Использование волоконно-оптических детекторов позволяет повысить средний дебит каждой скважины, обеспечить увеличение продолжительности эксплуатации дорогостоящего насосного оборудования, достигаемого за счет внедрения систем мониторинга и автоматизации процесса. Получаемая с датчиков информация позволяет осуществлять управление процессом в режиме реального времени, своевременно корректировать параметры процесса.

Перспектива развития отрасли состоит в замене активных детекторов состояния объектов на системы пассивного контроля, что в свою очередь приведет к увеличению коэффициента извлекаемости ископаемых видов топлива и позволит снизить удельные затраты энергии на получение конечного объема продукта.

Транспортировка газа

В сфере газотранспортной системы измерение показателей температуры, давления, коррозии и деформации позволяют своевременно проводить упреждающее обслуживание газопроводов для обеспечения надежности ее работы. При этом типе оптоволоконной деформации используется кабель с дифракционными решетками, позволяющие измерять действующие нагрузки в широком диапазоне значений.

Особенности практического использования детекторов в сфере газодобычи показал наличие круглосуточного оперативного доступа для проверки технического состояния отдельных линий магистрали, что в свою очередь позволило снизить количество аварий на единицу длины трубопровода почти в 2,5 раза.

Хранение отработанного ядерного топлива

Остаточная опасность отработанных частиц ядерного топлива предъявляет особые требования к утилизации остатков продуктов распада. К полигону для хранения токсических соединений предъявляются достаточно строгие требования, среди которых необходимость обеспечения устойчивости к действию геохимических и механических факторов, обеспечение эффективности хранения с низкими эксплуатационными расходами в течение продолжительного периода времени, надежность и точность функционирования оборудования.

Значительно упростить процесс организации хранения этого вида отходов может использование чувствительных оптоволоконных элементов для определения температуры, деформации, смещения.

Авионика и автоэлектроника

Устойчивость к электромагнитным помехам, небольшие габариты, способность сохранять работоспособность в условиях повышенных и пониженных температур у этих детекторов оказались востребованы в области автоэлектроники и авионики. Чаще всего в этих сферах применяются датчики углового и линейного положений, температуры и акселерометры. В области авиации эти устройства нашли применение в используемых там гироскопах, работающих на принципе интерферометра кольцевого типа и в системе навигации летательных аппаратов.

Медицина и биотехнологии

В области медицины и клеточных технологий, эти датчики нашли применение благодаря высокой разрешающей способности, небольшому диаметру и пластичности используемого оптического волокна, биологической и химической стойкости устройств.

Подробнее о применении в ядерной энергетике

В области практического применения ядерной энергетики детекторы этого типа ценят за возможность дистанционного определения ключевых показателей работы станции на безопасном для оператора расстоянии. Источник сигнала может находиться в десятках и сотнях километров от воспринимающего отклик устройства трансивера. Использование оптоволоконного кабеля позволяет избежать применения импульсных трубок, что в свою очередь делает ненужным использование металлоемкая арматура, входящая в состав труб, минимизируются неточности измерений.

Отдельное поступление сигналов обеспечивается за счет того, что каждый детектор имеет свою максимальную длину отражаемой волны. Кроме этого в конструкциях имеющих большое количество установленных в системе датчиков, сигналы от сенсорного элемента поступают с определенным временным интервалом.

Источник

Adblock
detector