Меню

Титановый датчик кислорода принцип работы

Титановый датчик кислорода. Назначение. Устройство, принцип действия. Причины и последствия при его неисправности.

Для того, чтобы добиться наибольшей продуктивности от работы двигателя необходимо обеспечить наилучшее сгорание топливно-воздушной смеси, в свою очередь для этого необходимо точно определить необходимые пропорции впрыскиваемого топлива и поступающего воздуха. Полученная смесь гарантирует наилучшее сгорание, продуктивную работу и наименьшее количество вредных веществ от выхлопа. Для определения доли кислорода в отработанных газах автомобиля, используется кислородный датчик (он же лямбда зонд, в народе).

Для полного сгорания 1 кг топлива необходимо 14,7 кг воздуха. Такой состав топливо-воздушной смеси называют стехиометрическим, он обеспечивает наименьшее содержание токсичных веществ в отработавших газах и, соответственно, эффективное их «дожигание» в каталитическом нейтрализаторе.

Для оценки состава топливо-воздушной смеси используют коэффициент избытка воздуха — отношение количества воздуха, поступившего в цилиндры, к количеству воздуха, теоретически необходимого для полного сгорания топлива. В мировой практике этот коэффициент называют лямбда. При стехиометрической смеси лямбда = 1, если лямбда 1 (избыток воздуха) смесь называют бедной.
Наибольшая экономичность при полностью открытой дроссельной заслонке бензинового двигателя достигается при лямбда=1,1-1,3. Максимальная мощность обеспечивается, когда лямбда =0,85-0,9.

Кислородный датчик из диоксида титана также является датчиком перехода. Диоксид титана имеет специальную особенность: электрическое сопротивление изменяется пропорционально доле кислорода в отработавшем газе. Измеренное сопротивление сообщает информацию о том, в каком рабочем состоянии находится двигатель.

Кислородный датчик из диоксида титана отличается следующими свойствами:

· не требуется эталонный воздух

· быстрое достижение рабочей температуры

В зависимости от автомобиля, эти датчики применялись как регулирующие и как диагностирующие датчики. Сейчас эти устройства больше не используются в заводской комплектации.

Принцип действия кислородного датчика из диоксида титана

Элемент из диоксида титана изменяет своё электрическое сопротивление пропорционально частичному давлению кислорода в смеси газа. При высоком содержании кислорода (λ > 1) диоксид титана становится менее токопроводящим, при низком содержании кислорода (λ

Источник

Устройство, принцип действия, диагностика лямбда-зондов. Циркониевый. Титановый. Широкополосный.

Какие бывают лямбда зонды, как устроены, как диагностировать неисправность кислородного датчика и методы проверки осциллографом. Давайте рассмотрим подробно в этой практической статье.

Существуют три типа кислородных датчиков, которые применяются в автомобилях. Циркониевый датчик. Титановый датчик. Широкополосный.

Существует в основном три разных, не взаимозаменяемых типа лямбда-датчика. Лямбда-датчики из диоксида циркония и диоксида титана также называют переключающими, скачками напряжения или «двоичными» датчиками, поскольку их выходной сигнал изменяется между двумя значениями в зависимости от того, находится ли топливо в обогащенном или обедненном состоянии. Третий тип — это широкополосный лямбда-датчик. Эти датчики также известны, как «линейные» лямбда-зонды, потому что они имеют выходной сигнал, который пропорционален широкому диапазону соотношений воздух-топливо. Широкополосные кислородные датчики измеряют эти соотношения и переходы между ними более точно.

Кислородный датчик

Лямбд-зонд устанавливается в выпускной трубе перед каталитическим нейтрализатором и непосредственно за катализатором. Кислородные датчики называются в обиходе первая и вторая лямбда в зависимости от места установки.

В V-образном двигателе могут быть установлены один или несколько датчиков.

Циркониевый датчик

Конфигурации проводов циркониевого лямбда-зонда:

  • Однопроводной кислородный датчик;
  • Двухпроводной кислородный датчик;
  • Трехпроводной кислородный датчик;
  • Четырехпроводной кислородный датчик.

Титановый датчик

Конфигурации проводов титанового лямбда-зонда:

  • Трехпроводной кислородный датчик;
  • Четырехпроводной кислородный датчик.

Принцип работы датчика кислорода

Циркониевый датчик

Циркониевый датчик производит сравнение содержания кислорода в системе выпуска отработавших газов с эталонным атмосферным газом, который содержится во внутренней камере. Отработавшие газы проходят над непроницаемой керамической наружной поверхностью датчика из диоксида циркония.

Эталонный атмосферный газ содержится во внутренней камере датчика. С обеих сторон керамической секции имеются электроды. Блок управления использует сгенерированное напряжение для определения топливовоздушного отношения. Бедная смесь (λ > 1). Богатая смесь (λ ZrO2 — это бесцветные кристаллы, с высокой температурой плавления, что является значительным преимуществом при использовании под воздействием высоких температур выхлопных газов.

Внимание! Температура плавления оксида циркония: 2715°C

Название ИЮПАК: Zirconium(IV) oxide, Zirconium dioxide.

Этот оксид металла применяется также в стоматологии для изготовления зубных протезов. Но в большей степени повлияло на использование оксида циркония в кислородном датчике это ещё одно его полезное свойство. Диоксид циркония при нагревании проявляет свойства твёрдого электролита и проводит ионы кислорода. Это свойство используется в выхлопных системах автомобилей, а также в промышленности в анализаторах кислорода и в топливных элементах.

Чтобы ответить на вопрос какой лямбда зонд выбрать, выясним какие бывают типы лямбда зондов, как работают и как диагностируются.

Строение циркониевого лямбда-зонда

  1. Выпускная труба;
  2. Корпус датчика/электрический контакт;
  3. Керамический элемент;
  4. Контакты;
  5. Опорное значение воздуха (эталонный воздух);
  6. Электроды;
  7. Пористое защитное покрытие.

Блок управления (ЭБУ) постоянно регулирует топливо-воздушное соотношение. Правильное значение лямбда зонда: (λ =1 ).

Оптимальная работа кислородного датчика зависит от температуры керамики, в свою очередь оптимальная температура керамики должна быть выше 350 0 С

Для ускорения достижения рабочей температуры кислородные датчики оснащены нагревательным элементом.

Титановый датчик

Конструкции титанового и циркониевого датчиков схожи. Циркониевые датчики меняют напряжение, измеряя содержание кислорода в отработавших газах. Титановые датчики изменяют сопротивление посредством измерения содержания кислорода в выхлопных газах.

Чертеж с вырезом кислородного датчика со встроенным нагревательным элементом.

  1. Соединительные провода
  2. Внутренние контакты
  3. Керамическая опора
  4. Корпус датчика
  5. Нагревательный элемент
  6. Трубка с прорезью ( Slotted tube)
  7. Опорное значение воздуха
  8. Керамический датчик
  9. Шайба

Спецификация KIA Rio 1.6 GDI (G4FD)

Используются два кислородных датчика:

Широкополосный кислородный датчик расположен перед каталитическим нейтрализатором.

Двухточечный кислородный датчик расположен за каталитическим нейтрализатором.

Блок управления использует сигнал широкополосного датчика, чтобы задать приблизительный состав топливовоздушной смеси.

Блок управления использует сигнал двухточечного датчика для коррекции смеси.

Блок управления может также осуществлять мониторинг действия каталитического нейтрализатора.

Характеристическая форма сигнала напряжения для широкополосного кислородного датчика.

Эта смесь становится беднее (B)

Характеристическая форма сигнала напряжения для циркониевого кислородного датчика.

Обратите внимание по вертикальной шкале отображается напряжение. Циркониевый датчик.

Эта смесь становится беднее (B)

Характеристическое напряжение для титанового кислородного датчика.

По вертикальной шкале изменение сопротивления. Титановый датчик.

Эта смесь становится беднее (B)

Осциллограммы лямбда-зондов

Проверка циркониевого датчика осциллографом

Упрощенная электрическая схема системы измерения кислорода. Выходное напряжение датчика подается на аналогово-цифровой преобразователь (A). Блок управления производит сравнение цифрового выхода с данными внутренней справочной таблицы.

Упрощенная электрическая схема системы измерения кислорода циркониевым датчиком

Для поддержания правильного соотношения топливовоздушной смеси блок управления регулирует сигнал на инжектор, для этого использует ШИМ-сигнал для управления температурой датчика (B).

Для производства измерений используется осциллоскоп.

Напряжение измеряется между точками X и Y отмеченными на электрической схеме.

Характеристическая форма сигнала напряжения для циркониевого кислородного датчика

Характеристическая форма сигнала напряжения для циркониевого кислородного датчика

Читайте также:  Может ли из за датчика коленвала плохо заводится машина

Проверка титанового датчика осциллографом

Упрощенная электрическая схема системы измерения кислорода

Упрощенная электрическая схема системы измерения кислорода титановым датчиком

Система измерения кислорода титановым датчиком:

Цепь делителя напряжения. Внутренний резистор.

Напряжение датчика изменяется по мере изменения содержания кислорода в отработавших газах.

Сопротивление датчика также изменяется по мере изменения содержания кислорода в отработавших газах.

Напряжение подается на аналого-цифровой преобразователь (B).

Блок управления автомобиля производит сравнение цифрового выхода с данными внутренней справочной таблицы.

Для поддержания правильного соотношения топливовоздушной смеси блок управления регулирует сигнал на инжекторы. Напряжение, подаваемое в цепь делителя напряжения, должно быть исключительно стабильным, так как блок управления воспринимает любое изменение как изменение содержания кислорода в отработавших газах.

Схема поддержания стабильного напряжения датчика:

Изменяющееся напряжение аккумуляторной батареи проходит через цепь регулятора (A), при этом цепь регулятора поддерживает напряжение постоянным.

Блок управления использует ШИМ-сигнал для управления температурой датчика (C).

Для производства измерений осциллоскопом измеряется напряжение между точками X и Y указанными на принципиальной схеме.

Характеристическая форма сигнала напряжения для титанового кислородного датчика.

Блок управления использует ШИМ-сигнал для управления температурой датчика.

Характеристическая форма сигнала напряжения для титанового кислородного датчика

Иногда требуется вы]вить исправность нагревательного элемента кислородного датчика. Компьютерная диагностика при этом не всегда сможет определить этот параметр. Кроме выявления неисправности нагревателя лямбда-зонда эта диагностика даёт информацию о скорости нагрева датчика. Это необходимо чтобы понимать в какой момент датчик выходит на рабочую температуру.

С помощью осциллографа исследуем характеристическую форму сигнала напряжения для датчика при быстром нагреве.

форма сигнала напряжения при быстром нагреве датчика кислорода

Характеристическая форма сигнала напряжения для датчика при медленном нагреве

форма сигнала напряжения при медленном нагреве датчика кислорода

Диагностика и срок службы лямбда-зондов

Срок службы циркониевого датчика

Ожидаемый срок службы: (48000 – 80000 км (30000 — 50000 миль)). По мере износа датчика возрастает время реакции.

Диагностика циркониевого датчика

Проверьте время реакции и параметры изменения напряжения осциллографом.

Для контроля напряжения пользуйтесь вольтметром. Проверьте на отсутствие угольных отложений на контактах.

  • Проверьте работу цепи обогрева.
  • Проверьте состояние соединений заземления.
  • Проверьте неразрывность электрического соединения.

Срок службы титанового датчика

Ожидаемый срок службы: (48,000 – 80,000 km (30,000 — 50,000 miles)). По мере износа датчика возрастает время реакции.

Диагностика титанового датчика

  • Проверьте время реакции и параметры изменения напряжения. Для контроля сопротивления пользуйтесь омметром.
  • Проверьте на наличие отсутствие отложений, мешающих качественной диагностике.
  • Проверьте работу цепи обогрева.
  • Проверьте питание датчика. Правильное значение: (5V).
  • Проверьте состояние соединений заземления.
  • Проверьте неразрывность электрического соединения.

На этом, пожалуй, прервусь. Если остались вопросы, то задавайте в комментариях, так как всё в одну статью не поместить. Кроме того, история полна частных случаев, и у каждого свои неповторимые симптомы не похожие на то, что было у других ранее. Благодарю за интерес проявленный к материалу.

Источник

Датчик кислорода:назначение,виды,устройство,фото,принцип работы

Кислородный датчик — устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название — лямбда-зонд.

Типы датчиков кислорода

Циркониевый датчик стоит впереди катализатора и сам генерирует напряжение, либо отрицательное, либо положительное. Опорное напряжение такого датчика составляет 0,45 В, которое отклоняется либо до 0,9 В, либо до 0,1 В. Главное отличие такого датчика от титанового является именно тот факт, что циркониевый самостоятельно генерирует напряжение.

При ремонте стоить помнить, что к такому датчику ни в коему случае нельзя припаивать какие попало провода, потому что именно в изоляции проложены каналы для прохождения эталонного воздуха. Если такового не будет, то датчик попросту не будет правильно работать.

Широкополосный датчик – это новейшая конструкция лямбда-зонда на данный момент. Его устройство позволяет не просто определять бедную или богатую смесь на входе в цилиндры, но так же и определять степень отклонения. Именно такие параметры сделали его более точным, в то же время широкополосный кислородный датчик быстрее реагирует на изменения состава выхлопных газов.

Всем известно, что любой кислородный датчик начинает работать только после 350 градусов. Здесь же для более быстрого достижения рабочей температуры устанавливается нагревательных элемент.

Циркониевый

Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).

Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)

Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.

Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.

Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.

Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода

Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.

По количеству проводов можно выделить несколько типов циркониевых устройств:

  1. В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
  2. Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
  3. Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.

Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики

Титановый

Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.

Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.

Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)

Широкополосный

Конструктивно отличается от предыдущих 2 камерами (ячейками):

Читайте также:  Датчик влажности в стиральной машине

В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.

Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.

Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6

Основные положения и функции Кислородного датчика :
Теория.

Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.

Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором.

Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля.

Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Конструкция и принцип работы кислородного датчика

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них — датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Наружный электрод — осуществляет контакт с выхлопными газами.
  • Внутренний электрод — контактирует с атмосферой.
  • Нагревательный элемент — используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
  • Твердый электролит — расположен между двумя электродами (диоксид циркония).
  • Корпус.
  • Защитный кожух наконечника — имеет специальные отверстия (перфорацию) для проникновения отработавших газов.

Устройство наконечника лямбда-зонда

Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.

Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):

Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В).

В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения.

Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.

Распространённые причины неисправностей лямбда зонда и способы их устранения

Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда — это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:

  • резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
  • ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
  • колебания оборотов холостого хода;
  • значительное снижение мощности при увеличении оборотов;
  • сбои в работе электронных блоков из-за задержек в подаче сигналов с датчика;
  • движение автомобиля рывками;
  • появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
  • поздний впрыск при нажатии педали.

Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.

Электронная проверка лямбда зонда

Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.

Читайте также:  Датчик холостого хода гранта спорт 16 клапанов

Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.

Замена лямбда зонда

В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.

Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.

Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.

Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.

Вопрос — ответ

В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.

B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.

B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.

Ассортимент кислородных датчиков

• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.

В DENSO решили проблему качества топлива!

Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации.

При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.

В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.

В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь).

ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.

Устройство и принцип работы современного гидротрансформатора:описание,фото

Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото

Датчик детонации:описание,виды,устройство,принцип работы

Вариатор:описание,фото,принцип работы,устройство,виды

Источник

Adblock
detector