Меню

Датчик холла для линейных перемещений

Руководство по применению датчиков Холла и герконов

В предыдущей статье обсуждалась важность фокусирования на всей конструкции системы, а не на конкретном компоненте магнитной схемы. В тех системах, где требуются специальные датчики, необходимо, чтобы конструктор определил факторы окружающей среды, механического воздействия, электрические и магнитные параметры всей системы, чтобы можно было выбрать датчик, который соответствует этим условиям эксплуатации.

Как уже упоминалось в первой статье, между разработчиком, производителем и потребителем должна поддерживаться четкая и прямая связь, чтобы рабочие требования ко всем датчикам и системе в целом могли быть четко определены и были понятны всем вовлеченным сторонам. Без такой постоянной связи мало шансов, что будет спроектирована надежная система, которая будет функционировать как нужно. И, наоборот, при хорошей коммуникации в проектной группе на протяжении всего процесса может быть разработана надежная схема, которая соответствует всем известным требованиям.

В этой статье будет рассмотрен вопрос, как выбрать технологии магнитных датчиков для аналоговых и цифровых приложений. В ней также определяются и описываются преимущества герконовых датчиков и датчиков Холла с приведением примеров приложений с микропроцессорным управлением, которые используют эти датчики.

Цифровые датчики: высокая надежность в дискретных приложениях

Во многих приложениях используется цифровой выход для определения, находится ли объект в определенной позиции. Например, датчик может быть использован для проверки наличия защитного ограждения на механизме. Если ограждение находится на своем месте, машина работает. Если же это не так, машина работать не будет. В этом типе дискретного приложения требуется цифровой выход. В приложениях с магнитными датчиками исключительную надежность обеспечивают следующие цифровые датчики:

Герконовые датчики: преимущества и применение

Герконовый датчик представляет собой электрический ключ, который для работы не требует питания, в отличие от интегральной схемы. Выводы заводятся в герметизированную стеклянную колбу, в которой находятся контактные пластины. В результате ключ в герконе обладает высокой надежностью, поскольку он не подвержен влиянию влаги или других факторов окружающей среды. Поэтому контакты не будут окисляться и с нагрузками логического уровня будут продолжать работать в течение миллионов циклов.

Герконовые датчики очень популярны среди приложения с питанием от батареи. Они используются в автомобильных составляющих безопасности, например, обнаружение защелкивания застежки ремня безопасности и обнаружение столкновения. Поскольку герконы могут переключать нагрузки и постоянного, и переменного напряжения, их часто выбирают для цифровых приложений типа «вкл/выкл», например, детектирование закрытия/открытия двери в системах безопасности и в бытовой технике.

Например, дверь холодильника использует геркон для определения закрытия двери. Магнит крепится к двери, а герконовый датчик закрепляется на неподвижной раме, скрытой за внешней стенкой холодильника. Когда дверь открыта, герконовый датчик не может обнаружить магнитное поле, что заставляет включиться светодиодную лампу. Когда дверь закрывается, датчик обнаруживает соответствующее магнитное поле, и светодиод выключается. В этом приложении микроконтроллер внутри блока управления получает сигнал от геркона, а затем включает или выключает светодиод.

Рисунок 1 – Геркон в двери холодильника используется для включения и выключения светодиода

Цифровые датчики Холла: преимущества и применение

Цифровые датчики Холла используют полупроводниковые приборы и их выходное напряжение изменяется в зависимости от изменения магнитного поля. Эти датчики объединяют в семе чувствительный элемент с эффектом Холла и электрическую схему, обеспечивающую цифровой выходной сигнал типа «вкл/выкл», что соответствует изменению магнитного поля без использования каких-либо движущихся частей. Использование датчика на основе эффекта Холла ограничено приложениями с низкими постоянными напряжением и током. В отличие от геркона, устройство на основе эффекта Холла содержит в себе активную схему, поэтому оно потребляет небольшое количество тока в любое время.

Цифровые датчики Холла обеспечивают высокую надежность и для точных требований к измерениям могут быть запрограммированы на активацию при заданной величине магнитного поля.

Эти датчики очень популярны в высокоскоростных измерительных схемах таких бытовых машин, как стиральные машины и сушилки. В этом применении вращающийся 16-полюсный кольцевой магнит активирует чип датчика Холла при каждом прохождении красного (северный полюс) сегмента и деактивирует его при каждом прохождении белого (южный полюс) сегмента, что дает очень точный сигнал, соответствующий скорости. Цифровые датчики Холла особенно полезны в автомобильных приложениях безопасности, таких как определение защелкивания застежки ремня безопасности и определение скорости зубчатой передачи.

Рисунок 2 – Схема применения датчика Холла для измерения скорости

Аналоговые/пропорциональные датчики для повышения стабильности и точности

Аналоговые измерительные приложения позволяют конечному пользователю мгновенно получать обратную связь о положении магнита. Аналоговый датчик Холла обладает высокоточным выходным сигналом с высоким разрешением.

Ранее аналоговые датчики Холла измеряли у магнитов плотность потока и в значительной степени зависели от внешней температуры. Так как в последние годы аналоговые технологии эффекта Холла развивались, теперь, вместо традиционной амплитуды поля, микросхема с датчиком Холла теперь измеряет угол поля, делая его намного менее чувствительным к изменениям температуры. Это улучшение позволяет датчику обеспечивать более стабильный аналоговый выходной сигнал в широком диапазоне температур.

Рассмотрим два типа датчиков Холла, которые могут быть выбраны для аналоговых измерительных схем:

Поворотный датчик Холла: преимущества и применение

Этот полупроводниковый датчик изменяет выходное напряжение при изменении магнитного поля. Он сочетает в себе измерительный элемента на основе эффекта Холла и электрическую схему, обеспечивающую аналоговый выходной сигнал, который соответствует изменению вращающегося магнитного поля без использования каких-либо движущихся частей. Этот датчик предлагает два варианта выходного сигнала: аналоговый или широтно-импульсно-модулированный (ШИМ). Устройство программируется таким образом, чтобы инженер мог связать определенное выходное напряжение или ШИМ сигнал с точной степенью поворота. При повороте до 360° доступны несколько точек программирования. Каждая программируемая точка представляет собой напряжение или ШИМ сигнал, который соответствует заданному углу магнитного поля. Это приводит к получению выходного сигнала, пропорционального углу поворота.

В отличие от механического и резистивно-плёночного поворотных устройств поворотный датчик Холла не испытывает механического износа или изменения значений сопротивления. Кроме того, он очень стабилен при нормальных рабочих температурах вплоть до +105°C. Результаты измерения угла поворота в диапазоне 0°–360° точно калибруются в соответствующем диапазоне выходного постоянного напряжения 0,5В–4,5В или коэффициента заполнения ШИМ сигнала 10–90%.

Поворотные датчики Холла становятся очень популярными для замены механических резистивно-пленочных потенциометров. Они используются в автомобильных и внедорожных приложениях, таких как определение положения клапана EGR в двигателях. Эти датчики также могут использоваться для определения положения поворотных ручек в приборах и бытовой технике.

Рисунок 3 – Поворотный датчик Холла, используемый в поворотной ручке стиральной машины

Линейный датчик Холла: преимущества и применение

Линейные датчики Холла похожи на поворотные датчики Холла, за исключением того, что они измеряют не угловое, а линейное движение магнитного поля. Датчик Холла программируется для выдачи заданного напряжения, пропорционального заданному расстоянию. Типы выходного сигнала у него такие же, как и у поворотного датчика Холла. Датчик измеряет линейное перемещение и относительный угол потока магнитного привода на расстоянии до 30 мм на каждую микросхему с датчиком Холла. Это дает в результате выходной сигнал, точно пропорциональный перемещению датчика.

Читайте также:  Калибровка датчика положения руля рено лагуна 2

Перед программированием выходных напряжений или значений ШИМ-сигнала, соответствующих относительному значению магнитного поля от магнита на приводе, датчик и привод могут быть помещены на место окончательного монтажа в устройстве, чтобы в процессе программирования учесть все магнитные воздействия от близлежащего окружения. Это позволит инженеру отрегулировать выходной сигнал датчика, поскольку в процессе программирования будут учтены любые шунтирующие, механические воздействия и воздействия посторонних магнитных полей.

Линейные датчики Холла часто используются в качестве датчиков контроля уровня жидкости. В этом применении датчик определяет положение движущегося поплавка с прикрепленным магнитом. Линейные датчики также полезны в более сложных конструкциях, таких как автомобильная коробка передач.

Заключение

Данная статья объясняет методологию разработки оптимальной магнитной цепи, для которой требуется настраиваемый датчик. Всегда важно определять параметры проекта всей системы до начала процесса проектирования.

В схемах, где требуются специальные датчики, например, приложения со сложным микропроцессорным управлением, герконовые датчики и датчики Холла обеспечивают бесконтактную технологию, которая является высоко повторяемой и надежной. Цифровой выходной сигнал доступен и у герконов, и у датчиков Холла, и эта технология широко используется в бытовой и автомобильной технике. Аналогично, оба этих типа датчиков могут быть разработаны для использования в аналоговых приложениях, где требуется высокий уровень точности и стабильности.

Источник

Магнитные датчики Infineon для измерения скорости и положения

Номенклатура магнитных датчиков Infineon включает в себя дискретные датчики Холла для определения положения объекта или наличия движения, датчики для измерения угла поворота, датчики для измерения линейных перемещений, датчики для измерения скорости и датчики объемного магнитного поля со встроенными микроконтроллерами. Перечисленные датчики предназначены для применения как в автомобилестроении, так и в других отраслях промышленности.

Определение пространственного положения как устройства в целом, так и отдельных его частей, необходимо в охранных системах с контролем состояния окон и дверей, в бесколлекторных двигателях постоянного тока, где алгоритм формирования напряжений основан на информации о положении ротора, во многих бытовых приложениях. Несмотря на разнообразие типов датчиков, позволяющих вводить в электрическую схему информацию о положении того или иного объекта, в последнее время все популярнее становятся устройства, основанные на измерении напряженности внешнего магнитного поля.

Ключевыми преимуществами магнитных датчиков являются компактность, экономичность, а также отсутствие электрических и механических связей между измерительным элементом и контролируемым объектом. А если прибавить к этому высокую чувствительность, линейность, точность и стабильность в широком диапазоне рабочих температур, то становится очевидным, что даже простая замена датчиков других типов, например, оптических или механических, на магнитные положительно скажется на технических и эксплуатационных характеристиках многих приложений.

Учитывая рост спроса, компания Infineon предлагает разработчикам богатый выбор микросхем магнитных датчиков.

Принцип работы магнитных датчиков

В 1879 году Эдвин Холл обнаружил, что при помещении проводника с током в поперечное магнитное поле на его боковых сторонах появляется разность потенциалов, пропорциональная направлению и величине магнитной индукции, что является результатом воздействия силы Лоренца на движущиеся заряды (рисунок 1). До второй половины ХХ века этот эффект не находил практического применения, и только в 1960 году был представлен первый промышленный датчик, основанный на этом физическом явлении. С этого момента магнитные датчики начинают активно использоваться в технике, приобретая все большую популярность.

Рис. 1. Принцип работы датчика Холла

Поскольку сила Лоренца, а следовательно, и ЭДС Холла, напрямую связана с подвижностью зарядов, для повышения чувствительности активный элемент изготавливают из полупроводниковых материалов. Чаще всего используют кремний, однако существуют и приборы с активной зоной из германия, арсенида галлия, фосфида индия и других полупроводников. Форма и геометрические размеры чувствительного элемента зависят от конкретного назначения, поэтому существуют как плоские, так и объемные датчики, причем при производстве плоских элементов хорошо зарекомендовала себя технология вакуумного напыления проводящих слоев на диэлектрическую основу. Несмотря та то, что чувствительность и линейность измерительного элемента напрямую зависят от его размеров, на практике редко применяют датчики с объемом активного проводника больше 1 мм 3 , что делает эти приборы одними из самых миниатюрных.

Однако эффект Холла имеет и ряд недостатков, основными из которых являются относительно малая величина выходного напряжения, не превышающая 1000 мВ/Тл, и температурная нестабильность. Это вынуждает устанавливать операционный усилитель, чаще всего с элементами термокомпенсации, в непосредственной близости от места проведения измерений, поэтому на рынке чаще всего присутствуют готовые решения – микросхемы, содержащие все необходимые для работы узлы и требующие минимального количества внешних компонентов (рисунок 2).

Рис. 2. Структурные схемы простейших магнитных датчиков

Поскольку микросхема магнитного датчика фактически является самостоятельной измерительной системой-на-кристалле, то никто не запрещает производителям электронных компонентов расширять ее возможности, путем добавления различных узлов и модулей, улучшающих как технические характеристики, так и функциональность. Поэтому на рынке присутствуют как простые датчики с аналоговым или дискретным выходом, так и целые измерительные системы с собственными сигнальными процессорами и энергонезависимой памятью для хранения настроек, поддерживающие большинство распространенных интерфейсов передачи данных, в том числе USART, I 2 C и SPI. И, конечно же, в каталогах Infineon имеются специализированные датчики практически для всех стандартных инженерных задач, таких как измерение угла поворота, скорости вращения и многих других.

Дискретные датчики Холла (Switch/Latch Sensors)

Определение наличия или отсутствия какого-либо объекта является, с одной стороны, самой простой, а с другой – самой распространенной задачей. Именно поэтому сфера применения дискретных датчиков простирается от бытовых приборов до серьезных промышленных и автомобильных систем с наивысшим уровнем функциональной безопасности. Этим же объясняется и широкий ассортимент датчиков, предлагаемых компанией Infineon, которые отличаются как по электрическим (чувствительность, гистерезис, тип выхода и так далее), так и по эксплуатационным характеристикам (температурный диапазон, диапазон рабочих напряжений и прочее).

Чаще всего дискретные (одиночные) датчики Холла применяются:

  • для определения наличия или отсутствия какого-либо объекта, например, датчик закрытия двери в охранных системах;
  • для определения наличия движения, например, датчик скорости вращения вала электродвигателя;
  • для определения положения объекта, например, концевые датчики стеклоподъемников автомобилей или датчики положения ручки управления автоматической коробкой передач (рисунок 3).

Рис. 3. Два комплекта (для обеспечения функциональной безопасности) датчиков Холла для определения положения ручки управления АКПП

Принцип работы дискретных магнитных датчиков производства компании Infineon основан на классическом эффекте Холла: чувствительный элемент измеряет величину электромагнитной индукции, в зависимости от которой выход микросхемы переводится в уровень логического нуля либо логической единицы.

Существуют два основных типа датчиков, отличающихся алгоритмом изменения выходного сигнала (рисунок 4). В простых переключателях (Switch) активный уровень выходного сигнала на выходе микросхемы устанавливается, если индукция внешнего магнитного поля превышает определенную величину. При этом для возврата в исходное состояние достаточно, чтобы индукция внешнего поля всего лишь стала меньше порогового значения (с учетом гистерезиса). Полярность магнитного поля при этом может быть как определенной (Unipolar), так и неопределенной (Bipolar). Такие микросхемы идеально подходят для определения наличия или отсутствия каких-либо объектов, например, в концевых датчиках, датчиках открытия/закрытия двери, датчиках положения ротора электродвигателя и прочих.

Читайте также:  Газовая плита срабатывает датчик

Рис. 4. Принцип работы дискретных датчиков Холла

В дискретных датчиках с защелкой (Latch) переключение выходного сигнала происходит только при достижении индукцией внешнего магнитного поля определенных пороговых значений, причем уровень выходного сигнала при этом зависит от полярности внешнего поля. Другими словами, после установки на выходе, например, логической единицы датчик вернется в исходное состояние только после того, как внешнее магнитное поле поменяет свою полярность. Такие датчики идеальны для приложений с вращающимися элементами. Например, с помощью дискретного датчика с защелкой можно достаточно легко определить частоту вращения вала электродвигателя.

Отдельно следует отметить микросхемы, содержащие в одном корпусе два датчика Холла (Double Hall Switches), с помощью которых можно определить не только частоту, но и направление вращения вала электродвигателя. Одним из таких приборов является микросхема TLE4966 с двумя выходами (рисунок 5), на которых присутствуют сигналы как о скорости (Speed), так и о направлении (Direction) вращения вала электродвигателя.

Рис. 5. Принцип работы микросхемы TLE4966

Дискретные датчики производства компании Infineon делятся на три большие категории, отличающиеся областью применения. Для автомобильных приложений следует выбирать датчики с префиксом TLE, которые могут работать в диапазоне рабочих температур -40…170°С при напряжении питания 3,0…5,5 В или 3,0…32 В. Аналогичный диапазон питающих напряжений и у датчиков, маркированных префиксом TLI и предназначенных для промышленного использования, однако температурный диапазон у них меньше и составляет -40…125°С. Для остальных потребительских приложений лучше всего выбирать датчики с префиксами TLV, способные работать в диапазоне температур -40…125°С при напряжении питания 3,0…26 В.

Основным семейством дискретных датчиков, предлагаемых компанией Infineon, являются датчики TLx496x (таблица 1), которые могут выпускаться как в потребительском, так и в промышленном и автомобильном исполнениях. Отличительной особенностью данного семейства является широкий диапазон рабочих напряжений, составляющий 3…32 В с возможностью перенапряжения до 42 В, при собственном токе потребления, не превышающем 1,6 мА. Широкий диапазон чувствительности и рабочих температур делает эти датчики идеальными для широкого круга приложений, в том числе и для устройств с высоким уровнем функциональной безопасности: промышленного оборудования, лифтов, электроинструмента, автомобилей и многих других.

Таблица 1. Технические характеристики датчиков семейства TLx496x

Наименование Тип Индукция срабатывания, мТл Индукция отпускания, мТл Гистерезис, мТл Автомо-
бильные прило-
жения
Промышлен-
ные прило-
жения
Корпус
TLE4961-1M/L Latch 2,0 -2,0 4,0 + + SOT23/SSO-3-2
TLE4961-2M Latch 5,0 -5,0 10,0 + + SOT23
TLE4961-3M/L Latch 7,5 -7,5 15,0 + + SOT23/SSO-3-2
TLE4964-1M Switch 18,0 12,5 5,5 + + SOT23
TLE4964-2M Switch 28,0 22,5 5,5 + + SOT23
TLE4964-3M Switch 12,5 9,5 3,0 + + SOT23
TLE4964-5M Switch 7,5 5,0 2,5 + + SOT23
TLE4968-1M/L Bipolar 1,0 -1,0 2,0 + + SOT23/SSO-3-2
TLE4961-5M Latch 15,0 -15,0 30,0 + + SOT23
TLE4961-4M Latch 10,0 -10,0 20,0 + + SOT23
TLE4964-4M Switch 10,0 8,5 1,5 + + SOT23
TLE4964-6M Switch 3,5 2,5 1,0 + + SOT23
TLV4964-1M Switch 18,0 12,5 5,5 SOT23
TLV4964-2M Switch 28,0 22,5 5,5 SOT23
TLI4961-1M/L Latch 2,0 -2,0 4,0 + SOT23/SSO-3-2
TLV4961-3M Latch 7,5 -7,0 15,0 SOT23

Для приложений, требующих высокоточного определения позиции контролируемого объекта, компания Infineon рекомендует дискретные датчики семейства TLE/TLI4963/65-xM (таблица 2), отличающиеся малым уровнем джиттера, не превышающим 0,35 мкс. Микросхемы TLE/TLI4963/65-xM рассчитаны на использование в промышленных и индустриальных приложениях и могут работать в диапазоне питающих напряжений в диапазоне 3,0…5,5 В, потребляя при этом ток, не превышающий 1,4 мА.

Таблица 2. Технические характеристики датчиков семейства TLE/TLI4963/65-xM

Наименование Тип Индукция срабатывания, мТл Индукция отпускания, мТл Гистерезис, мТл Автомобильные приложения Промышленные приложения Корпус
TLE4963-1M Latch 2,0 -2,0 4,0 + SOT23
TLE4963-2M Latch 5,0 -5,0 10,0 + SOT23
TLE4965-5M Unipolarswitch 7,5 5,0 2,5 + SOT23
TLI4963-1M Latch 2,0 -2,0 4,0 + SOT23
TLI4963-2M Latch 5,0 -5,0 10,0 + SOT23
TLI4965-5M Unipolarswitch 7,5 5,0 2,5 + SOT23

В отличие от предыдущих серий дискретных датчиков, выпускаемых в SMD-корпусах, семейство TLV496x-xTA/B (таблица 3) рассчитано на использование в потребительской технике и выпускается в корпусах, предназначенных для монтажа в отверстия. Микросхемы имеют широкий диапазон рабочий напряжений, составляющий 3…26 В, при токе потребления, не превышающем 1,6 мА.

Таблица 3. Технические характеристики датчиков семейства TLV496x-xTA/B

Наименование Тип Индукция срабатывания, мТл Индукция отпускания, мТл Гистерезис, мТл Корпус
TLV4961-1TA Latch 2,0 -2,0 4,0 TO92S-3-1
TLV4961-1TB Latch 2,0 -2,0 4,0 TO92S-3-2
TLV4961-3TA Latch 7,5 -7,5 15,0 TO92S-3-1
TLV4961-3TB Latch 7,5 -7,5 15,0 TO92S-3-2
TLV4964-4TA Unipolarswitch 10,0 8,5 1,5 TO92S-3-1
TLV4964-4TB Unipolarswitch 10,0 8,5 1,5 TO92S-3-2
TLV4964-5TA Unipolarswitch 7,5 5,0 2,5 TO92S-3-1
TLV4964-5TB Unipolarswitch 7,5 5,0 2,5 TO92S-3-2
TLV4968-1TA Latch 1,0 -1,0 2,0 TO92S-3-1
TLV4968-1TB Latch 1,0 -1,0 2,0 TO92S-3-2

Для приложений, требующих определения не только скорости, но и направления вращения роторов электродвигателей, предназначены датчики линейки TLE4966 (таблица 4), содержащие в одном корпусе два датчика Холла, расположенных на расстоянии 1,45 мм. Микросхемы TLE4966 удовлетворяют требованиям AEC-Q100 и могут использоваться, в том числе, в автомобильных приложениях.

Таблица 4. Технические характеристики датчиков семейства TLE4966

Наименование Тип Индукция срабатывания, мТл Индукция отпускания, мТл Гистерезис, мТл Корпус
TLE4966K/L Double Hall, speed and direction output 7,5 -7,5 15 TSOP6/SSO-4-1
TLE4966-2K Double Hall, two independent outputs 7,5 -7,5 15 TSOP6
TLE4966-3K Double Hall, speed and direction output 2,5 -2,5 5 TSOP6
TLE4966V-1K Vertical double Hall, speed and direction output 2,5 -2,5 5 TSOP6

Датчики угла поворота (Angle Sensors)

Измерение угла поворота вращающегося объекта необходимо в таких приложениях как электродвигатели, рулевые колонки автомобилей, разнообразное промышленное оборудование, робототехника, мехатронные системы, а также во многих других. От точности и надежности этих приборов во многом зависят как безопасность, так и качество работы большинства автоматизированных систем, поэтому неудивительно, что многие производители электронных компонентов ведут активные поиски новых методов как измерения положения измеряемого объекта, так и обработки полученных результатов.

Первоначально для измерения угла поворота применялись датчики на классическом эффекте Холла с аналоговым выходом, преимуществами которых, помимо традиционных для большинства магнитных приборов компактности и экономичности, являются безынерционность ввиду отсутствия магнитного гистерезиса и возможность работы в широком диапазоне уровней магнитных полей. Однако невысокая точность не позволила их использовать в прецизионных системах и заставила искать новые подходы к проведению измерений. Именно поэтому современные датчики угла поворота практически не используют данный принцип, а вычисляют положение внешнего магнита с помощью более точных методов измерения магнитосопротивления чувствительного элемента.

Одними из первых появились датчики, измеряющие величину анизотропного магнитосопротивления (Anisotropic Magneto Resistance, AMR). Основным отличием их от датчиков Холла является ориентация внешнего магнитного поля, силовые линии которого теперь должны быть направлены не перпендикулярно, а параллельно плоскости свободного (измерительного) слоя (Free Layer, FL), как показано на рисунке 6. Ключевым преимуществом AMR-датчиков является повышенная по сравнению с датчиками Холла чувствительность, а также малый уровень джиттера. Однако для многих прецизионных приложений этой точности все же недостаточно, к тому же AMR-датчики в принципе не способны определить полярность внешнего магнитного поля, из-за чего максимальное значение измеряемого угла ограничено 180°.

Читайте также:  Распиновка проводов датчика положения дроссельной заслонки

Рис. 6. Принцип работы магнитных датчиков для измерения угла поворота

Устранить эти недостатки удалось путем введения дополнительного опорного магнитного слоя (Reference Layer, RL), изолированного от внешнего магнитного поля немагнитным промежутком (Non Magnetic Layer, NML). Это привело к появлению условий для возникновения гигантского магнитосопротивления (Giant Magneto Resistance, GMR) в случае, когда магнитная ориентация свободного слоя, определяемая внешним магнитным полем, оказывается направленной навстречу жестко заданной магнитной ориентации опорного слоя. Датчики на основе гигантского магнитосопротивления отличаются повышенной чувствительностью и способны отследить любое положение внешнего объекта, поскольку их рабочий диапазон измерения угла равен 360°. К недостаткам GMR-датчиков можно отнести ограниченный диапазон индукции внешнего магнитного поля, который для большинства моделей не должен превышать 100 мТл.

Дальнейшие исследования в этой области привели к созданию в 2014 году нового поколения датчиков, в основе работы которых лежит измерение туннельного магнитосопротивления (Tunneling Magneto Resistance, TMR). Структура чувствительных элементов на основе измерения TMR аналогична структуре GMR-приборов и так же содержит два магнитных слоя (свободный и опорный), разделенных туннельным барьером (Tunnel Barrier, TB). Основное отличие этих методов заключается в направлении протекания тока, используемого для измерения сопротивления, который теперь направлен не вдоль, а поперек многослойной структуры.

Ключевым преимуществом датчиков на основе измерения туннельного магнитосопротивления является ультравысокая чувствительность. Выходной сигнал датчиков на основе TMR приблизительно в 20 раз выше, чем у AMR-датчиков и в шесть раз выше, чем у GMR-аналогов. Кроме этого, TMR-датчики отличаются высокой стабильностью, меньшим температурным дрейфом и меньшей скоростью старения.

Для точного определения угла поворота обычно используют восемь чувствительных элементов – магниторезисторов с разной ориентацией магнитных моментов опорных слоев относительно корпусов приборов (рисунок 7). Эти элементы, соединенные в два измерительных моста, под действием внешнего магнитного поля формируют два основных сигнала: синусный и косинусный, являющиеся основной для последующих математических вычислений.

Рис. 7. Принцип измерения угла поворота

Для критически важных приложений с высоким уровнем функциональной безопасности, например, для автомобильной техники, необходимо обязательное дублирование критически важных компонентов. Поскольку датчики угла поворота могут использоваться, например, в системах рулевого управления, отказ которых может привести к неконтролируемому движению транспортного средства и возможным человеческим жертвам, они должны соответствовать требованиям ISO 26262, в том числе и самого жесткого уровня ASIL-D. Этим требованиям полностью отвечают микросхемы, содержащие два независимых датчика, расположенные с двух сторон подложки на расстоянии, не превышающем 600 мкм (рисунок 8). Такое расположение позволяет упростить конструкцию рулевого устройства и формировать два независимых комплекта практически одинаковых сигналов с помощью единственного ферритового магнита, поскольку при столь малом расстоянии между датчиками напряженность измеряемого поля будет практически одинакова.

Рис. 8. Конструкция микросхем с двумя независимыми датчиками, расположенными по обе стороны подложки

Однако такое расположение датчиков внутри микросхемы вовсе не обязательно, поскольку для соответствия требованиям ISO 26262 важно, чтобы датчики и их выходные сигналы были электрически изолированы и независимы. Несмотря на то, что микросхема TLE5501 содержит два одинаковых датчика, смонтированные на одной стороне подложки, она соответствует требованиям ISO 26262, поскольку они электрически никак не связаны между собой (рисунок 9).

Рис. 9. Электрическая схема и пример использования микросхемы TLE5501

Анализируя номенклатуру датчиков угла поворота производства Infineon (таблица 5, рисунок 10), можно отметить, что большинство из них использует технологию GMR, хотя есть и модели с технологией AMR (TLE5109A16), а также одна микросхема (TLE5309D), содержащая два датчика, которые выполнены по разным технологиям (AMR и GMR). Поскольку измерение TMR остается относительно новым подходом в построении датчиков, ассортимент этих приборов пока невелик, однако можно предположить, что именно эта технология в ближайшем будущем станет доминирующей, поскольку требования к точности проведения измерений с каждым годом только растут.

Рис. 10. Номенклатура датчиков угла поворота Infineon

Таблица 5. Технические характеристики датчиков угла поворота Infineon

Наименование Технология Расположение датчиков на подложке Интерфейс выходов Sin/Cos Интерфейс аналогового выхода Дополни-
тельные интер-
фейсы
Точность Корпус
TLE5009 GMR С одной стороны Аналоговый 0,9 DSO-8
TLE5009A16(D) GMR С двух сторон Аналоговый 1,0 TDSO-16
TLE5011 GMR С одной стороны SSC (SPI) 1,6 DSO-8
TLI5012B GMR С одной стороны SSC (SPI) SSC (SPI) PWM/IIF/
SPC/HSM
1,9 DSO-8
TLE5012B(D) GMR С одной или с двух сторон SSC (SPI) SSC (SPI) PWM/IIF/
SPC/HSM
1,0 DSO-8/
TDSO-16
TLE5014C16(D)* GMR С одной или с двух сторон SPC 1,0 TDSO-16
TLE5014P16(D)* GMR С одной или с двух сторон PWM 1,0 TDSO-16
TLE5014S16(D)* GMR С одной или с двух сторон SENT 1,0 TDSO-16
TLE5014SP16(D)* GMR С одной или с двух сторон SPI 1,0 TDSO-16
TLE5109A16(D) AMR С одной или с двух сторон Аналоговый 0,5 TDSO-16
TLE5309D AMR + GMR С двух сторон Аналоговый SSC (SPI) 0,5 (AMR),
1,0 (GMR)
TDSO-16
TLE5501* TMR С одной стороны Аналоговый 1,0 DSO-8
* – соответствует ISO 26262.

Датчики Холла для измерения линейных перемещений (Linear Hall Sensors)

Во многих приложениях возникает задача определения положения объекта, перемещающегося по некоторой траектории, которая совсем не обязательно должна быть прямолинейной. Контролируемым объектом может быть, например, педаль или рулевая колонка автомобиля, дроссельная заслонка топливной системы двигателя внутреннего сгорания (рисунок 11), линейный привод промышленного робота, шток измерителя уровня жидкости и многие другие приложения, содержащие движущиеся части, положение которых может принимать любое значение в некотором ограниченном пространстве.

Рис. 11. Конфигурация магнитного поля магнитного датчика для определения положения дроссельной заслонки двигателя автомобиля

Очевидно, что в подобных приложениях необходимо измерять абсолютное значение магнитного поля, зависящее как от величины индукции внешнего магнита, так и от расстояния между ним и датчиком. А это означает, что данные системы должны иметь возможность калибровки, с помощью которой можно точно учесть все специфические особенности конкретного узла. Именно поэтому большинство линейных датчиков производства компании Infineon (таблица 6) кроме измерительной части содержат узлы для обработки результатов измерений с учетом поправочных коэффициентов, хранящихся во встроенной энергонезависимой памяти (рисунок 12).

Рис. 12. Структурная схема датчиков TLE4998

Таблица 6. Технические характеристики линейных датчиков Infineon

Источник

Adblock
detector