Меню

Как проверить датчик пламени горелки

Особенности датчиков пламени горелки

Бытовые и промышленные приборы, работающие на сжиженном или природном газе должны в обязательном порядке оборудоваться датчиком наличия пламени. Отсутствие горения может привести к тому, что газ начнет поступать в окружающее пространство. Это чревато пожаром или взрывом.

Конструктивные особенности

Для предотвращения опасных ситуаций разработаны специальные датчики, которые отслеживают наличие процесса горения газа в устройстве. По конструкции датчики пламени существуют нескольких типов, использующие разные принципы контроля процесса горения. Наибольшее распространение получили следующие:

  • Фотоэлектрические;
  • Термопары;
  • Ионизационные.

Каждый из перечисленных типов имеет как достоинства, так и недостатки.

Фотоэлектрические

В время горения происходит излучение светового потока, который регистрируется фоточувствительным элементом конструкции. В спектре пламени присутствует излучение всего спектра, поэтому разработаны устройства, реагирующие на:

  • Видимое излучение;
  • Ультрафиолетовой излучение;
  • Инфракрасное излучение;
  • Комбинированные.

Наиболее просты по конструкции инфракрасные датчики. Главный недостаток заключается в том, что инфракрасное излучение испускают все нагретые тела, поэтому велика вероятность ложных показаний при отсутствии пламени от нагретых стенок и элементов газового котла.

Датчики, реагирующие на видимое излучение могут давать ложное срабатывание от посторонней засветке и не могут работать при открытой камере сгорания.

Наиболее надежны ультрафиолетовые датчики, но доля ультрафиолетового излучения в пламени невелика, поэтому приходится применять меры по повышению чувствительности фотоэлемента. Наиболее распространено использование фотоумножительных конструкций. Увеличение надежности контроля достигается применением чувствительных элементов, реагирующих сразу на несколько частей спектра излучения.

Все фотодатчики обладают следующими недостатками:

  • Большие размеры, накладывающие ограничения по применению в малогабаритных конструкциях;
  • Нахождение чувствительного полупроводникового элемента вблизи нагретой зоны котла;
  • Малый срок службы фотоумножителя;
  • Сложность обвязки (электронной схемы);
  • Резкое снижение чувствительности (отсутствие срабатывания при нормальных условиях) при наличии пыли и загрязнений на поверхности датчика.
  • Возможность размещения за пределами камеры сгорания;
  • Высокая надежность в пределах срока службы.

К фотоэлектрическим относится широко распространенный датчик наличия пламени ДП1.

В зависимости от варианта исполнения (модификации)и схемы блока сигнализации датчик пламени ДП1 имеет различающиеся характеристики по типу установки, температурным характеристикам и может использоваться в широком диапазоне устройств.

Термопары

Работа основана на свойстве спаяразнородных металлов при нагреве генерировать электродвижущую силу. Ля регистрации ЭДС достаточно чувствительного вольтметра, роль которого в электронной схеме выполняет простейший компаратор.

Среди достоинств элементов на термопаре:

  • Простота конструкций;
  • Высочайшая надежность;
  • Высокая термостойкость;
  • Нечувствительность к загрязнениям;
  • Нет необходимости в источнике питания — датчик сам генерирует напряжение.

Основной недостаток — крайне высокая инерционность, которую можно уменьшить снизив размеры чувствительного элемента, но это снижает термостойкость и срок службы. Запаздывание срабатывания вызвано временем, необходимым для снижения температуры контакта при пропадании пламени.

Стоимость датчиков контроля пламени на термоэлектрическом эффекте может быть высокой из-за необходимости применения редкоземельных металлов в сплавах для увеличения чувствительности и повышения термостойкости.

Ионизационные

Работа данных устройств основана на том, что при горении раскаленные газы находятся в ионизированном состоянии, то есть представляют собой плазму. Плазма, как четвертое состояние вещества, за счет ионов обладает высокой электропроводностью.

Конструктивно ионизационный датчик наличия пламени горелки представляет собой металлический электрод, внесенный в зону горения. Между электродом и корпусом горелки (форсунками) приложена разность потенциалов. При наличии пламени между электродом и горелкой начинает протекать электрический ток, тем больший, чем больше интенсивность горения, то есть степень ионизации нагретых продуктов сгорания. Протекающий ток регистрируется электронной схемой. Схема контроля регулируется на определенное значение тока, которое зависит от интенсивности горения. Снижение мощности пламени приводит к подаче сигнала об его отсутствии.

  • Простота;
  • Надежность;
  • Долговечность;
  • Высокое быстродействие;
  • Низкая стоимость.
  • Чувствительность к загрязнениям на поверхности электрода;
  • Ненадежность работы в среде газов, содержащих большое количество водорода или окиси углерода, поскольку в таких средах степень ионизации невелика.
Читайте также:  Hp 1320 датчик регистрации

К потере чувствительности приводят:

  • Загрязнение поверхности;
  • Неправильная пропорция горючей смеси;
  • Малая интенсивность горения;

Ложное срабатывание может вызвать наличие пыли на изоляции, вызывающей токи утечки.

В зоне горения электрод располагают в корне пламени, где его температура не превышает 900 ⁰С. Конструктивно датчик выполняется из хромаля, сплава железа с примесью алюминия и хрома. Изоляция в стенке камеры сгорания выполняется из высокотемпературной керамики.

Наиболее часто ионизационный датчик объединяют с запальным электродом. Во время поджига на него подаются импульсы высокого напряжения. В это время схема контроля пламени отключена. После прекращения поджига реле подключает электрод к схеме контроля. При наличии необходимой величины тока между электродом и горелкой считается, что поджиг произошел успешно, в противном случае процесс повторяется заново.

Комбинированная конструкция требует наличия высоковольтной изоляции провода, подходящего к электроду.

Использование

Перечисленные конструкции применяются не только в газовых котлах. Их используют также в металлургическом производстве для контроля за зоной плавления металла, в котлах, работающих на всех видах топлива. Это также относится и к упомянутому выше датчику пламени ДП1.

Область применения фотоэлектрических элементов определяется спектральной характеристикой. Так нагретые металлы имеют максимум излучения в инфракрасном диапазоне, а в пламени газа присутствует большая доля ультрафиолетовых лучей.

В бытовых газовых котлах наиболее часто используются ионизационные датчики, так как они имеют малые габариты, простую конструкцию и низкую стоимость.

Видео по теме

Источник

Как проверить датчик пламени горелки

Датчики контроля пламени Siemens QRA.. разработаны для применения вместе с блоками управления горением Сименс для контроля пламени горения газа, желтого или синего пламени горения жидкого топлива и для проверки искры зажигания. В зависимости от модификации они поддерживают как прерывистый, так и непрерывный режим работы горелки. QRA работают совместно с автоматами и менеджерами горения Siemens типа: LME , LFL , LMV2/3.. , LMV51.. , LMV52.. .

Для применения с автоматом горения
типа

Прерывыистый
(принудительный
перезапуск
каждые 24 часа)

Принцип контроля пламени датчиков серии QRA.. заключается в регистрации УФ — радиации, излучаемой газовым или жидкотопливным пламенем. Радиационный датчик состоит из УФ — чувствительного фотоэлемента с 2 электродами, которые зажигаются при освещенности радиацией в диапазоне 190. 270 нм спектра излучения, при этом в цепи датчика пламени запускается ток. УФ — элемент не реагирует на раскаленный огнеупорный кирпич в камере сгорания, дневной свет или свет от освещенности котельного помещения, что выгодно отличает его от от датчиков пламени фоторезистивного типа.
Датчики QRA. в зависимости от сферы применения, комплектуются следующими модификациями УФ-элементов:

Рекомендации по электрическому подключению датчиков QRA.

Важно добиться передачи сигнала практически без искажений и потерь:

Эксплуатация и проверка работоспособности

Безотказная работа горелки гарантируется, если только интенсивность УФ- излучения в месте нахождения датчика пламени будет достаточно высокой для зажигания фотоэлемента датчика в течение каждой полуволны. Интенсивность УФ- излучения в месте нахождения датчика проверяют путем замера тока датчика пламени.

Читайте также:  Vq35de распиновка проводов датчиков распредвала

1) — Соединение микроамперметра с AGQ1. / AGQ2. / AGQ3. адаптер и датчик пламени
A — Угол падения излучения
M — Микроамперметр (DC), внутреннее сопротивление

Значения тока для автоматов горения:

M2 — Вольтметр постоянного тока
Диапазон измерения 0. 10 В
Внутреннее сопротивление Ri > 10 МОм

Если измеренное значение тока датчика отличается от требуемых значений, указанных для применяемой модели блока управления горением, то это может свидетельствовать о неисправности датчика пламени. Но необходимо иметь ввиду, что на ток, протекающий в измерительной цепи датчика, оказывают влияние и другие факторы (длина кабеля, контакты, соединения и.т.п). Следует также отметить, что УФ-элемент датчиков пламени серии QRA.. является расходным материалом. Его средний срок службы составляет приблизительно 10,000 часов при макс. температуре 50 °C, при более высокой температуре окружающей среды срок службы элемента значительно сокращается

Источник

Датчики контроля пламени — один из важнейших факторов безопасной работы котельной

О.В. Полтавцев, коммерческий директор,
ООО Конструкторское бюро «АГАВА», г. Екатеринбург

Введение

В котлоагрегатах, при сжигании газа или жидкого топлива, пламя в зоне горения не всегда отличается устойчивостью: в некоторых ситуациях может произойти его отрыв, что создает угрозу взрыва в топке. Поэтому котельное оборудование в обязательном порядке оснащается системой контроля пламени.

Однако, присутствующие на рынке современные системы обнаружения пламени обладают рядом недостатков, в частности, такими, как: конечная надежность и достоверность обнаружения пламени или его отсутствия, низкая селективность, чувствительность к посторонним засветкам. Существенным фактором также является высокая стоимость некоторых приборов, что особенно актуально для объектов ЖКХ. Поэтому так важно в этой сфере появление недорогих, но отвечающих всем современным требованиям, приборов.

ООО КБ «АГАВА», опираясь на двадцатилетний практический опыт работы по автоматизации тепловых агрегатов (котлов, топок, печей) и разработке КИПиА для этой отрасли, предлагает именно такое решение: качественную, надежную систему контроля пламени по разумной цене. При создании этого прибора были учтены все требования безопасности, предъявляемые к теплогенерирующему оборудованию.

Датчики-реле контроля пламени АДП-01

Назначение датчика-реле контроля пламени АДП-01 (рисунок) — фиксировать наличие пламени в топке котла, а в случае его исчезновения — формировать сигнал для автоматики защиты.

Рисунок. Датчик-реле контроля пламени АДП-01.

В корпусе небольшого прибора (габаритные размеры датчика составляют 98×56 мм, вес — 125 г) находится печатная плата, на которой смонтированы электронные компоненты. На задней крышке корпуса расположены три светодиода, выходной разъем и переменный резистор, предназначенный для регулировки чувствительности прибора. На передней части корпуса находится чувствительный элемент.

Принцип действия основан на преобразовании излучения и пульсации пламени в электрический сигнал с помощью чувствительного элемента, который после обработки сравнивается с заданным пороговым уровнем. При превышении порога формируется выходной сигнал. Если сигнал больше порогового уровня, на датчике горит зеленый светодиод, если меньше — зажигается красный светодиод: это знак, что пламя отсутствует, а газ подается. Остальные светодиоды служат индикаторами интенсивности пламени.

Для подключения к системе автоматизации каждый датчик снабжен выходом одного из двух типов: это может быть открытый коллектор или контакты реле. Для предотвращения перегрева прибора и, соответственно, выхода его из строя, при установке дополнительно предлагается специальный фланец.

Датчики серии АДП-01 выпускаются уже несколько лет. К настоящему моменту в линейку входят 9 приборов, различающихся, в первую очередь, чувствительными элементами. Это оптические сенсоры (фотодиоды и фоторезисторы), ионизационный сенсор и последняя разработка — ультрафиолетовый сенсор.

Читайте также:  Датчик заднего хода pajero pinin

Датчики пламени АДП-01.9 и АДП-01.10

Новые модификации датчиков пламени с чувствительным элементом, реагирующим на ультрафиолетовое излучение, были разработаны специально по просьбам проектировщиков и наладчиков, часто сталкивающихся с проблемами настройки режимов горения теплогенерирующего оборудования.

Дело в том, что оптические сигнализаторы пламени, которые имеют в качестве сенсора фотодиоды и фоторезисторы, оказались очень чувствительны к пульсации факела. В 90% случаев такой принцип действия себя оправдывает, однако иногда бывает, что факел гаснет, а оптический датчик все равно показывает наличие пламени, потому что он регистрирует ложные пульсации, оставшиеся из-за колебаний горячего воздуха или дымовых газов на фоне раскаленной стенки топки. При этом ультрафиолетовое излучение характерно только для процесса горения газа и полностью отсутствует у раскаленных элементов конструкции топки.

Кроме того, для котлов с тремя и более горелками одним из главных требований, предъявляемых к системе контроля пламени, является селективный (индивидуальный) контроль факела. Это означает, что датчик, смонтированный на одной горелке, не должен реагировать на возникновение, погасание или отрыв пламени на остальных горелках, поскольку может привести, как минимум, к хлопку газа в топке, а как максимум — к масштабной аварии котла или всей котельной.

Поскольку ультрафиолетовые приборы практически не реагируют на посторонние засветки в видимой части спектра, при использовании датчиков пламени АДП-01.9 и АДП-01.10 вероятность «срабатывания» прибора от работы «чужой» горелки снижается, что повышает надежность и безопасность работы котельного агрегата.

Приборы линейки АДП-01 с ультрафиолетовым датчиком являются универсальными и могут применяться для любых газовых горелок и запальников, в т.ч. для котлов и печей с эффектом «светлой топки» и повышенными требованиями к селективности.

Следует добавить, что стоимость этих приборов из линейки АДП-01 сегодня составляет немногим более 7 тыс. руб.

элемента Тип выхода Рекомендации по применению АДП-01.1 (2) Фотодиод

SFH203 Открытый коллектор (контакты реле) Реагирует на пульсации пламени.

Может использоваться для газовых и жидкотопливных горелок, цвет пламени которых находится в диапазоне от голубого до красного.

Не защищен от теплового излучения раскаленных поверхностей топки и засветок. АДП-01.3(4) Фоторезистор

ФР-1 Открытый коллектор (контакты реле) Реагирует на пульсации пламени.

Может использоваться для газовых и жидкотопливных горелок, цвет пламени которых находится в диапазоне от голубого до инфракрасного.

Не защищен от теплового излучения раскаленных поверхностей топки и засветок. АДП-01.6 Контрольный

электрод Контакты реле Для объектов, у которых невозможно отделить пламя запальной горелки от факела основной горелки или пламени других горелок. АДП-01.7 (8) Фоторезистор

VT33N3 Открытый коллектор (контакты реле) Реагирует на пульсации пламени.

Предназначен для газовых горелок, центр спектра пламени которых лежит в области голубого цвета.

Не защищен от теплового излучения раскаленных поверхностей топки и засветок. АДП-01.9 (10) НОВИНКА! Ультрафиолетовый

датчик Открытый коллектор (контакты реле) Универсальный прибор для газовых горелок и запальников.

Реагирует на поток ультрафиолетового излучения, характерного только для процесса горения газа.

Не реагирует на внешние засветки и излучения раскаленных поверхностей топки.

Также может применяться для улучшения показателей селективности контроля факела в многогорелочных котлах.

В таблице приведены рекомендации по применению всех датчиков пламени серии АДП-01, на основании которой можно подобрать оптимальное оборудование. ■

Источник

Adblock
detector