Меню

В чем измеряется холодопроизводительность компрессора

Холодильный компрессор

Компрессор, или как в нашем случае холодильный компрессор, важнейшая часть современного холодильного оборудования, например, парокомпрессионных холодильных установок, по сути это «сердце» холодильной машины. Поэтому очень важно понимать, что это такое и как он устроен. Компрессор холодильный, как устройство, очень распространен. Область применения и использования компрессоров огромна. Везде, где требуется сжатие или подача веществ под давлением, без компрессора не обойтись. Холодильные компрессорыизготавливается, согласно самым высоким требованиям герметичности, так как предназначены для сжатия и передачи паров специального вещества в холодильных установках. Это специальное рабочее вещество называется холодильным агентом, в дальнейшем будем упоминать как хладагент.

Основные хладагенты, которые приненяются в холодильных компрессорах:

— диоксид серы (еще известен как сернистый ангидрид),

— такие углеводороды как метан.

Предназначение холодильного компрессора

Задача холодильного компрессора в холодильном агрегате заключается в отсасывании паров хладагента из испарителя холодильного агрегата, сжатия, и подачи их под давлением в конденсатор холодильной парокомпрессионной машины.

Холодопроизводительность компрессора

Одной из главных характеристик холодильного компрессора является такой показатель как холодопроизводительность. Она определяется количеством теплоты, которое необходимо для испарения 1 кг холодильного агента за единицу времени, при заданной температуре кипения и конденсации хладагента. При рабочих условиях эта характеристика называется рабочая холодопроизводительность, а при расчетных или сравнительных температурах — номинальная холодопроизводительность. Современные холодильные машины имеют величины холодопроизводительности от сотен ватт до десятков мегаватт.

Основные типы холодильных компрессоров:

Поршневые холодильные компрессоры как видно из названия, выделяются наличием поршневой группы (до 12 поршней). Такие компрессоры наиболее часто применяются для малой холодильной техники (системы кондиционирования воздуха, бытовые и торговые холодильники).

Винтовые (роторные) холодильные компрессоры, при примерно одинаковых габаритах, более холодопроизводительны чем поршневые,.

Ротационные холодильные компрессоры нашли применение, преимущественно, в бытовых системах кондиционирования воздуха. Их можно разделить на пластинчатые компрессоры и компрессоры с катящимся ротором.

Спиральные холодильные компрессоры применяют в холодильном оборудовании для пищевой промышленности, а также, и в основном, в кондиционировании. Спиральные компрессоры различные модификации в зависимости от критериев классификации: маслозаполненные, с впрыском хладагента, сухого сжатия; одно- и двухступенчатые; герметичные, бессальниковые, сальниковые; с эвольвентными спиралями, со спиралями Архимеда, с кусочно-окружными спиралями; вертикальные и горизонтальные.

Холодильные турбокомпрессоры (центробежные холодильные компрессоры)используют, главным образом, для больших систем кондиционирования воздуха.

История изобретения холодильного компрессора

История современных парокомпрессионных холодильных машин начинается, как принято считать, 14 августа 1834 года, когда английский изобретатель Джекоб Перкинс (Jacob Perkins) получил первый патент на цикл охлаждения-сжатия пара под названием «Приборы и средства для производства льда, с помощью охлаждающих жидкостей». Но подобная идея пришла еще раньше, в 1805 году, в голову американского изобретателя Оливера Эванса (Oliver Evans), но так и не сумевшего воплотить идею в жизнь. А Перкинс построил первую парокомпрессионную машину, которая использовала в качестве хладагента — эфир. Еще одним из «отцов» холодильных машин считается немец Карл фон Линде (Carl Paul von Linde), один из учителей знаменитого Рудольфа Дизеля (Rudolf Diesel). Общество холодильных машин было создано им в Висбадене, еще в 1879 году. Считается, что построенная им аммиачная парокомпрессионная холодильная машина, и положила начало холодильному машиностроению. Первые холодильные машины Линде заказала знаменитая ирландская пивоварня Guinness.

Читайте также:  Поломки компрессора для списания

Современные производители компрессоров для холодильных установок

Сегодня наиболее авторитетные и известные марки в сфере производства холодильных компрессоров — это ведущие мировые бренды: —Copeland, корпорации Emerson Climate Technologies; —Bitzer, немецкой компании Bitzer SE. Также известны и распространены холодильные компрессоры компаний: -датской Danfoss, и Maneurope в том числе; -итальянских Dorin (Officine Mario Dorin) и Frascold; -немецкой Bock(Bock Kaltemaschinen GmbH).

Компрессор — это механизм, который позволяет сжимать и передавать под давлением газообразные вещества. Это может быть любой газ, воздух, хладагент в состоянии пара и прочее.

Поршневой холодильный компрессор — это один из наиболее распространенных компрессоров для холодильных установок.

Винтовой (роторный) холодильный компрессор представляет собой механизм с винтовыми роторами, для сжатия и подачи паров холодильного агента в холодильных машинах.

Спиральный холодильный компрессор это устройство, где сжатие газа происходит при помощи спиралей.

Источник

Производительность чиллера

ООО «ЦентрПром-Холод» много лет производит качественные чиллеры различной холодопроизводительности.

За краткие сроки рассчитаем произведем чиллер от 2 до 1000 кВт, исходя из Ваших данных, соберем поз заказ чиллер на 100% отвечающий вашему техническому заданию, а также предложим оптимальные технические решения для наиболее эффективной интеграции произведенного охладителя жидкости в Ваше производство.

Ознакомиться с нашим оборудованием можно здесь…

Общие понятия

Под производительностью чиллера следует понимать такой термин, как холодопроизводительность. Холодопроизводительность (Q0) — это количество теплоты, которое способен отнять чиллер от охлаждаемой жидкости в единицу времени, измеряется в кВт. Q0 определяется компрессором, т.е. чем мощнее компрессор, тем больше Q0.

Как рассчитать необходимую холодопроизводительность можно ознакомиться пройдя по ссылке — подбор чиллера.

Однако, один и тот же компрессор, при различных условиях работы, имеет различную Q0. Зависит это от режима работы чиллера температуры кипения фреона и температуры конденсации.

Кипение фреона зависит от температуры поддержания охлаждаемой жидкости. Чем ниже температура охлаждения жидкости, тем ниже температура кипения фреона, тем ниже Q0. Иными словами, один и тот же чиллер, при охлаждении жидкости до +5 °С и +25 °С , будет иметь различную холодопроизводительность и эта разница существенна в два раза и более.

Температура (давление) конденсации фреона зависит от температуры окружающей (охлаждающей) среды и мощности конденсатора.

Чем ниже температура окружающей среды, тем ниже температура конденсации, тем выше Q0. Например, один и тот же компрессор, при одинаковой температуре кипения имеет Q0 = 4.5 кВт, при температуре конденсации 55 °С и Q0=7.0 кВт, при температуре конденсации 35 °С .

Для достижения наибольшей холодопроизводительности чиллера, следует повысить кипение и снизить конденсацию.

Способы повышения температуры кипения хладагента

Повысить кипение, самым простым способом, увеличив уставку конечной температуры охлаждения. Если для производства не принципиальна температура воды в заданном технологическим циклом диапазоне, то из него нужно выбрать максимальное значение. Т.е. в Ваше технологическое оборудование должна поступать охлаждающая жидкости с температурой не выше +20 °С , при этом производитель чиллера, при пуско-наладке оборудования установил на контроллере +7 °С . Повысьте градус уставки до +18 °С (2 градуса дифференциал), таким образом, Вы повысите эффективность чиллера в кВт, примерно в 1.5 раза.

Большинство Российских производителей чиллеров изготавливают каждую единицу под заказ, что позволяет конструктивно рассчитать испаритель и ТРВ (терморегулирующий вентиль) таким образом, чтобы максимально приблизить температуру кипения к температуре охлаждаемой жидкости. Зачастую, эта дельта может составлять до 8-10К, однако, возможно снизить этот показатель до 4К и даже до 3К. Этими мерами мы можем повысить кипение фреона, относительно температуры жидкости. Как этого добиться? Подобрать максимально большое ТРВ (сообразно мощности компрессора) и полностью его открыть. Как сделать это без риска затопления компрессора жидким, не выкипевшим фреоном, вследствие переразмерного или переоткрытого ТРВ? Подобрать боле мощный испаритель, в котором данное количество жидкого фреона, выходящее из ТРВ, будет успевать выкипать, проходя через него, при этом перегрев на всасывании должен быть на необходимой отметке. Такая мера целесообразна, если стоимость более мощного компрессора значительно выше стоимости более мощного испарителя, что довольно часто бывает и такой метод, в свою очередь, не редко применяется. На практике, это может снизить стоимость чиллера, при заданной производительности.

Читайте также:  Компрессор для автомобиля mega mag auto

Как видно из таблицы, при кипении фреона Т0 = -10 °C , Q0=2.17 кВт, а при Т0=-5 °C , Q0=2.86кВт, при одинаковой температуре конденсации Tc = +45 °C . Эту разницу, при некоторых условиях вполне можно нивелировать за счет вышеописанных действий, повысив холодопроизводительность более чем на 30%.

Способы снижения температуры кондесации

Для повышения Q0 чиллера, путем снижения температуры конденсации, при существующей температуре окружающей среды, необходимо увеличить мощность конденсатора. Чем больше его мощность, тем ниже температура конденсации. Подбирается переразмерный конденсатор с коэффициентом

2.5-3.5, т.е. на 1 кВт мощности компрессора, в режиме, приходится

2.5-3.5 кВт мощности конденсатора. На практике, этого бывает достаточно, для поддержания температуры конденсации на уровне 30-35С, при температуре окружающей среды до +45 °С для R407С, R404a, R22, R507а и некоторых других фреонов и +55 °С для R134a. Существует важный аспект , если чиллер будет работать, не только при высокой, но и при низкой температуре окружающей среды, необходимо предотвратить чрезмерное снижение температуры конденсации ниже +30 °С , путём установки реле плавного вращения вентиляторов конденсатора, при производстве чиллера. Дифференциальные реле давления не способны точно поддерживать необходимую температуру конденсации, они дают значительные колебания, которые при низкой температуре воздуха могут снижать конденсацию ниже нормы, даже только периодически включаясь на максимальные обороты.

Такой метод, в отличие от первого (увеличение испарителя), не нашел широкого применения, так как увеличение мощности воздушного конденсатора довольно дорогое “удовольствие”. В данном случае дешевле подобрать более мощный компрессора. Однако, иногда такой метод все же применяется. Когда необходимый компрессор совсем немного не подходит по Q0, при конденсации +45 °С и нужно доиться +40 °С . Тут как правило сравнивается все в комплексе – цена моделей в данной линейке, выбор из более дорогой линейки, как по компрессорам, так и по воздушным конденсаторам.

Наиболее применим данный метод не в целях экономии, а для воздушных чиллеров для жаркого климата (по ссылке есть более подробное описание).

Как видно из таблицы, при температуре конденсации фреона Тс = +55°C, Q0=3.67 кВт, а при Т0=+35°C, Q0=5.65кВт, при одинаковой температуре кипения T0 = +5°C. Снизив Tc, можно получается разброс холодопроизводительностей более чем на 50%. Обычно, при подборе воздушного конденсатора чиллера делается расчет на температуру конденсации Tc = +40°C — +45°C, исходя из максимальной температуры окружающей среды Tокр. = +25°C — +30°C. Т.е. дельта (dT) между Tc и Tокр. составляет 15К. Путем увеличения мощности воздушного конденсатора, подбора более производительных вентиляторов и некоторых других более редко применимых мер (вроде орошения водой и т.п.) можно снизить dT до 5К. На практике, меньшей дельты нам пока применять не приходилось.

Читайте также:  Аэрограф для моделизма с компрессором обзор

Источник

Холодопроизводительность, расчет

Холодопроизводительность установки охлаждения жидкостей — это та тепловая мощность, которую установка способна отбирать от жидкости. Холодопроизводительность оборудования часто путают с полезной мощностью. Бывает такое, что даже опытные на вид энергетики, увидев, что хододопроизводительность установки в три раза превышает потребляемую мощность, удивляются, что КПД в этом случае достигает 300%(!). На самом деле о КПД можно говорить только в том случае, где существует процесс преобразования энергии. Например в электродвигателе электрическая энергия преобразуется в механическую, при этом имеются потери на нагрев и трение. И КПД двигателя как раз показывает, сколько энергии потеряно.

В случае с холодильником, процесса преобразования нет, а есть отбор тепла (энергии) от охлаждаемой среды.

Холодопроизводительность любой холодильной установки охлаждения жидкости сильно зависит от температуры, до которой необходимо охлаждать жидкость. Чем выше конечная температура жидкости, тем выше холодопроизводительность. Это связано с тем, что хладагент способен отобрать больше тепла у жидкости, при более высокой температуре кипения.

Определить требуемую холодопроизводительность можно в соответствии с исходными данными по формулам (1) или (2).

1. объемный расход охлаждаемой жидкости G (м3/час);

2. требуемая (конечная) температура охлажденной жидкости Тk (°С);

3. температура входящей жидкости Тн(°С).

Формула расчета требуемой холодопроизводительности установки для охлаждения воды:

(1) Q (кВт) = G x (Тн – Тk) x 1,163

Формула расчета требуемой холодопроизводительности установки для охлаждения любой жидкости:

(2) Q (кВт) = G x (Тнж– Тkж) x Cpж x rж / 3600

Cpж – удельная теплоемкость охлаждаемой жидкости, кДж/(кг °С) (таблица),

rж – плотность охлаждаемой жидкости, кг/м3(таблица).

Удельная теплоемкость вещества показывает количество энергии, которую необходимо сообщить/отобрать, для того, чтобы увеличить/уменьшить температуру одного килограмма вещества на один градус Кельвина.

То есть в других словах, если например удельная теплоемкость воды равняется 4,2 кДж/(кг*К) — это значит, что для того, чтобы нагреть один кг воды на один градус, необходимо передать этому кг воды 4,2 кДж энергии.

Удельная теплоемкость для любого вещества есть величина переменная, то есть она зависит от температуры и агрегатного состояния вещества. Если продолжать пример с водой, то ее удельная теплоемкость для 0°С равняется 4,218, а при 40°С 4,178 кДж/(кг*К). Для льда теплоемкость еще ниже — 2,11 кДж/(кг*К) для льда с температурой 0°С.

Что касается воды, необходимо отметить, что это жидкость с самым высоким значением удельной теплоемкости. Другими словами, чтобы обеспечить заданное количество температуры, вода должна поглотить или отдать количество тепла значительно больше, чем любое другое тело такой же массы.

В связи с этим становится понятным интерес к воде, когда нужно обеспечить искусственный теплообмен. Количество тепла, необходимое для повышения температуры с Тн до Тk тела массой m можно рассчитать по следующей формуле:

где m — масса тела, кг; С — удельная теплоемкость, кДж/(кг*К)

Источник

Adblock
detector